Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows

Smoothed particle hydrodynamics (SPH) is efficient, mass preserving, and flexible in handling topological changes. However, sparsely sampled thin features are difficult to simulate in SPH-based free surface flows, due to a number of robustness and stability issues. In this article, we address this problem from two perspectives: the robustness of surface forces and the numerical instability of thin features. We present a new surface tension force scheme based on a free surface energy functional, under the diffuse interface model. We develop an efficient way to calculate the air pressure force for free surface flows, without using air particles. Compared with previous surface force formulae, our formulae are more robust against particle sparsity in thin feature cases. To avoid numerical instability on thin features, we propose to adjust the internal pressure force by estimating the internal pressure at two scales and filtering the force using a geometry-aware anisotropic kernel. Our result demonstrates the effectiveness of our algorithms in handling a variety of sparsely sampled thin liquid features, including thin sheets, thin jets, and water splashes.

[1]  Yue Gao,et al.  A Level-Set Method for Skinning Animated Particle Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[2]  Huamin Wang,et al.  A Deformable Surface Model for Real-Time Water Drop Animation , 2012, IEEE Transactions on Visualization and Computer Graphics.

[3]  H. Posch,et al.  Liquid drops and surface tension with smoothed particle applied mechanics , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Fedir V. Sirotkin,et al.  A new particle method for simulating breakup of liquid jets , 2012, J. Comput. Phys..

[5]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[6]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[7]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[8]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[9]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[10]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[11]  R. Bridson,et al.  Matching fluid simulation elements to surface geometry and topology , 2010, ACM Trans. Graph..

[12]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[13]  Ronald Fedkiw,et al.  Efficient simulation of large bodies of water by coupling two and three dimensional techniques , 2006, ACM Trans. Graph..

[14]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[15]  M. Gross,et al.  Physics-inspired topology changes for thin fluid features , 2010, ACM Trans. Graph..

[16]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[17]  Ignacio Llamas,et al.  Simulation of bubbles in foam with the volume control method , 2007, ACM Trans. Graph..

[18]  James F. O'Brien,et al.  Simulating liquids and solid-liquid interactions with lagrangian meshes , 2013, TOGS.

[19]  Reiji Tsuruno,et al.  Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[20]  Matthias Teschner,et al.  Versatile surface tension and adhesion for SPH fluids , 2013, ACM Trans. Graph..

[21]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[22]  Mark Sussman,et al.  A Stable and Efficient Method for Treating Surface Tension in Incompressible Two-Phase Flow , 2009, SIAM J. Sci. Comput..

[23]  Jihun Yu,et al.  Explicit Mesh Surfaces for Particle Based Fluids , 2012, Comput. Graph. Forum.

[24]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[25]  J. K. Chen,et al.  An improvement for tensile instability in smoothed particle hydrodynamics , 1999 .

[26]  Matthias Teschner,et al.  Boundary Handling and Adaptive Time-stepping for PCISPH , 2010, VRIPHYS.

[27]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[28]  Mingyu Zhang,et al.  Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method , 2010, J. Comput. Phys..

[29]  Hongan Wang,et al.  Local Poisson SPH For Viscous Incompressible Fluids , 2012, Comput. Graph. Forum.

[30]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[31]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[32]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[33]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[34]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[35]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[36]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[37]  J. Morris Simulating surface tension with smoothed particle hydrodynamics , 2000 .

[38]  Paul Meakin,et al.  Modeling of surface tension and contact angles with smoothed particle hydrodynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Jihun Yu,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA '10.

[40]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, ACM Trans. Graph..

[41]  Hongan Wang,et al.  Staggered meshless solid-fluid coupling , 2012, ACM Trans. Graph..

[42]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[43]  Stefan Jakobsson,et al.  Modeling Surface Tension in SPH by Interface Reconstruction using Radial Basis Functions , 2010 .

[44]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[45]  Markus H. Gross,et al.  Two-scale particle simulation , 2011, ACM Trans. Graph..

[46]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[47]  Matthias Teschner,et al.  A Parallel SPH Implementation on Multi‐Core CPUs , 2011, Comput. Graph. Forum.

[48]  Matthias Teschner,et al.  An Efficient Surface Reconstruction Pipeline for Particle-Based Fluids , 2012, VRIPHYS.