How Far Can Polymer Solar Cells Go? In Need of a Synergistic Approach

The photovoltaic effect in organic materials is an interesting research area because it offers fundamental knowledge, waiting to be explored, and the potential to offer low-cost technology to replace traditional inorganic solar cells. Worldwide research effort in this area is largely motivated by the desire to develop a new technology platform to cost-effectively harvest solar energy. Currently, researchers from different disciplines are focusing on developing new materials, performing physical studies to gain basic understanding of charge separation and transport mechanisms in these disordered soft material systems, and formulating new device structures and processing conditions in order to push the solar energy conversion efficiency above threshold for commercialization. This Perspective reviews some of the work that has been done over the past 20 years and describes the efforts in materials development to move beyond certain milestones. We emphasize the importance of a synergistic approach in developin...

[1]  Donal D. C. Bradley,et al.  Studies of Highly Regioregular Poly(3‐hexylselenophene) for Photovoltaic Applications , 2007 .

[2]  Stephen R. Forrest,et al.  Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells , 2009 .

[3]  S. Beaupré,et al.  Highly efficient organic solar cells based on a poly(2,7-carbazole) derivative , 2009 .

[4]  Alex K.-Y. Jen,et al.  Polymer Solar Cells That Use Self‐Assembled‐Monolayer‐ Modified ZnO/Metals as Cathodes , 2008 .

[5]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[6]  Mario Leclerc,et al.  A New Poly(2,7‐Dibenzosilole) Derivative in Polymer Solar Cells , 2007 .

[7]  Gui Yu,et al.  Functional Organic Field‐Effect Transistors , 2010, Advanced materials.

[8]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[9]  S. Forrest,et al.  Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices. , 2009, Journal of the American Chemical Society.

[10]  Alan J. Heeger,et al.  Enhanced Power Conversion Efficiency in PCDTBT/PC70BM Bulk Heterojunction Photovoltaic Devices with Embedded Silver Nanoparticle Clusters , 2011 .

[11]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[12]  Dirk M. Guldi,et al.  Carbon nanotubes as integrative materials for organic photovoltaic devices , 2008 .

[13]  Gang Li,et al.  Control of the nanoscale crystallinity and phase separation in polymer solar cells , 2008 .

[14]  P. Pinel,et al.  A review of available methods for seasonal storage of solar thermal energy in residential applications , 2011 .

[15]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[16]  Wei Chen,et al.  Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. , 2011, Nano letters.

[17]  Niyazi Serdar Sariciftci,et al.  Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk‐Heterojunction Solar Cells , 2007 .

[18]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[19]  Linghai Xie,et al.  Recent Developments in Top‐Emitting Organic Light‐Emitting Diodes , 2010, Advanced materials.

[20]  Luping Yu,et al.  When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance , 2010, Advanced materials.

[21]  J. Park,et al.  Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics , 2007 .

[22]  Wei You,et al.  Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. , 2011, Angewandte Chemie.

[23]  X. Zhu,et al.  Charge-transfer excitons at organic semiconductor surfaces and interfaces. , 2009, Accounts of chemical research.

[24]  Mats Andersson,et al.  Polymer Photovoltaic Cells with Conducting Polymer Anodes , 2002 .

[25]  Luping Yu,et al.  A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. , 2010, Accounts of chemical research.

[26]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[27]  Daniel Moses,et al.  Photoinduced Carrier Generation in P3HT/PCBM Bulk Heterojunction Materials , 2008 .

[28]  Yang Yang,et al.  A Robust Inter‐Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells , 2011, Advanced materials.

[29]  Wei You,et al.  Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO levels. , 2010, Angewandte Chemie.

[30]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[31]  S. Bauer,et al.  Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors , 2005 .

[32]  Raj René Janssen,et al.  The Energy of Charge‐Transfer States in Electron Donor–Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells , 2009 .

[33]  Luping Yu,et al.  Development of new semiconducting polymers for high performance solar cells. , 2009, Journal of the American Chemical Society.

[34]  C. Q. Wu,et al.  Dynamics of photogenerated polarons in conjugated polymers. , 2004, Physical review letters.

[35]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[36]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[37]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[38]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[39]  Wei You,et al.  Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymer−Fullerene Solar Cells , 2010 .

[40]  D. D. de Leeuw,et al.  Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer , 2010, Advanced materials.

[41]  Paulo Roberto Mei,et al.  New processes for the production of solar-grade polycrystalline silicon: A review , 2008 .

[42]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[43]  Guillermo C. Bazan,et al.  Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives , 2010, Advanced materials.

[44]  Frederik C. Krebs,et al.  Life-cycle analysis of product integrated polymer solar cells , 2011 .

[45]  Zhan'ao Tan,et al.  Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. , 2006, Journal of the American Chemical Society.

[46]  Gang Li,et al.  Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. , 2011, Journal of the American Chemical Society.

[47]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[48]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[49]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[50]  Daniel Moses,et al.  Photoconductivity of a Low‐Bandgap Conjugated Polymer , 2007 .

[51]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[52]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[53]  Kenji Kawano,et al.  Open circuit voltage of stacked bulk heterojunction organic solar cells , 2006 .

[54]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[55]  Alex K.-Y. Jen,et al.  Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione , 2010 .

[56]  S. Beaupré,et al.  High Efficiency Polymer Solar Cells with Long Operating Lifetimes , 2011 .

[57]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[58]  Vladimir Dyakonov,et al.  Polymer–fullerene bulk heterojunction solar cells , 2010, 1003.0359.

[59]  Martin A. Green,et al.  Solar cell efficiency tables (Version 38) , 2011 .

[60]  Jenny Nelson,et al.  Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection , 2003 .

[61]  Mm Martijn Wienk,et al.  Electron Transport in a Methanofullerene , 2003 .

[62]  R. J. Kline,et al.  Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. , 2011, ACS nano.

[63]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[64]  Masahiro Hiramoto,et al.  Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell , 1990 .

[65]  A. Heeger,et al.  Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. , 2011, Journal of the American Chemical Society.

[66]  Junbiao Peng,et al.  High-performance polymer heterojunction solar cells of a polysilafluorene derivative , 2008 .

[67]  Luping Yu,et al.  Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell. , 2010, The journal of physical chemistry. B.

[68]  Bernard Kippelen,et al.  Origin of the open-circuit voltage in multilayer heterojunction organic solar cells , 2008 .

[69]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[70]  Ling-I Hung,et al.  Low-bandgap conjugated polymer for high efficient photovoltaic applications. , 2010, Chemical communications.

[71]  S. Forrest,et al.  Erratum: “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells” [Appl. Phys. Lett. 79, 126 (2001)] , 2002 .

[72]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[73]  S. Darling,et al.  Tetrathienoanthracene-based copolymers for efficient solar cells. , 2011, Journal of the American Chemical Society.

[74]  Fei Huang,et al.  Development of new conjugated polymers with donor-pi-bridge-acceptor side chains for high performance solar cells. , 2009, Journal of the American Chemical Society.

[75]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[76]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[77]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[78]  Guillermo C Bazan,et al.  Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. , 2009, Nature chemistry.

[79]  E. Bittner,et al.  Exciton dissociation dynamics in model donor-acceptor polymer heterojunctions. I. Energetics and spectra. , 2005, The Journal of chemical physics.

[80]  Yongfang Li,et al.  Poly[3-(5-octyl-thienylene-vinyl)-thiophene]: a side-chain conjugated polymer with very broad absorption band. , 2006, Chemical communications.

[81]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[82]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[83]  J. Hummelen,et al.  Ultrafast Hole‐Transfer Dynamics in Polymer/PCBM Bulk Heterojunctions , 2010 .

[84]  X. Zhu,et al.  Coulomb barrier for charge separation at an organic semiconductor interface. , 2008, Physical review letters.

[85]  Zhenan Bao,et al.  Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents , 2007 .

[86]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .