Standard bases, syzygies and their implementation in SINGULAR

[1]  Ferdinando Mora,et al.  An Algorithm to Compute the Equations of Tangent Cones , 1982, EUROCAM.

[2]  Carlo Traverso,et al.  “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.

[3]  Donal B. O’Shea Topologically trivial deformations of isolated quasihomogeneous hypersurface singularities are equimultiple , 1987 .

[4]  Oscar Zariski,et al.  Some open questions in the theory of singularities , 1974 .

[5]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[6]  Frank-Olaf Schreyer,et al.  A standard basis approach to syzygies of canonical curves. , 1991 .

[7]  Rüdiger Gebauer,et al.  On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..

[8]  Roberto La Scala An algorithm for complexes , 1994, ISSAC '94.

[9]  Teo Mora,et al.  Local Decomposition Algorithms , 1990, AAECC.

[10]  D. Bayer The division algorithm and the hilbert scheme , 1982 .

[11]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[12]  Franco P. Preparata,et al.  Issues in robotics and nonlinear geometry , 1992 .

[13]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[14]  Hans Schönemann,et al.  Singularities with exact Poincaré complex but not quasihomogeneous. , 1989 .

[15]  Gert-Martin Greuel,et al.  Constant milnor number implies constant multiplicity for quasihomogeneous singularities , 1986 .

[16]  Carlo Traverso,et al.  Gröbner bases computation using syzygies , 1992, ISSAC '92.

[17]  Steven L. Kleiman,et al.  Introduction to Grothendieck Duality Theory , 1970 .

[18]  Teo Mora,et al.  La queste del saint Gra(AL): A computational approach to local algebra , 1991, Discret. Appl. Math..

[19]  H. Michael Möller,et al.  Computational aspects of reduction strategies to construct resolutions of monomial ideals , 1984, AAECC.