Standard bases, syzygies and their implementation in SINGULAR
暂无分享,去创建一个
Hans Schönemann | Bernd Martin | Gerhard Pfister | Gert-Martin Greuel | Hubert Grassmann | Thomas Siebert | G. Greuel | G. Pfister | H. Schönemann | W. Neumann | W. Pohl | B. Martin | H. Grassmann | W. Neumann | W. Pohl | T. Siebert | Bernd Martin | Thomas Siebert
[1] Ferdinando Mora,et al. An Algorithm to Compute the Equations of Tangent Cones , 1982, EUROCAM.
[2] Carlo Traverso,et al. “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.
[3] Donal B. O’Shea. Topologically trivial deformations of isolated quasihomogeneous hypersurface singularities are equimultiple , 1987 .
[4] Oscar Zariski,et al. Some open questions in the theory of singularities , 1974 .
[5] Miles Reid,et al. Commutative Ring Theory , 1989 .
[6] Frank-Olaf Schreyer,et al. A standard basis approach to syzygies of canonical curves. , 1991 .
[7] Rüdiger Gebauer,et al. On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..
[8] Roberto La Scala. An algorithm for complexes , 1994, ISSAC '94.
[9] Teo Mora,et al. Local Decomposition Algorithms , 1990, AAECC.
[10] D. Bayer. The division algorithm and the hilbert scheme , 1982 .
[11] N. Bose. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .
[12] Franco P. Preparata,et al. Issues in robotics and nonlinear geometry , 1992 .
[13] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.
[14] Hans Schönemann,et al. Singularities with exact Poincaré complex but not quasihomogeneous. , 1989 .
[15] Gert-Martin Greuel,et al. Constant milnor number implies constant multiplicity for quasihomogeneous singularities , 1986 .
[16] Carlo Traverso,et al. Gröbner bases computation using syzygies , 1992, ISSAC '92.
[17] Steven L. Kleiman,et al. Introduction to Grothendieck Duality Theory , 1970 .
[18] Teo Mora,et al. La queste del saint Gra(AL): A computational approach to local algebra , 1991, Discret. Appl. Math..
[19] H. Michael Möller,et al. Computational aspects of reduction strategies to construct resolutions of monomial ideals , 1984, AAECC.