Global dynamics of the interstellar medium in magnetized disc galaxies

Magnetic fields are an elemental part of the interstellar medium in galaxies. However, their impact on gas dynamics and star formation in galaxies remains controversial. We use a suite of global magnetohydrodynamic simulations of isolated disc galaxies to study the influence of magnetic fields on the diffuse and dense gas in the discs. We find that the magnetic field acts in multiple ways. Stronger magnetized discs fragment earlier due to the shorter growth time of the Parker instability. Due to the Parker instability in the magnetized discs, we also find cold ($T \lt 50\, \mathrm{K}$) and dense ($n\sim 10^3 {--}10^4\, \mathrm{cm}^{-3}$) gas several hundred pc above/below the mid-plane without any form of stellar feedback. In addition, magnetic fields change the fragmentation pattern. While in the hydrodynamic case, the disc breaks up into ring-like structures, magnetized discs show the formation of filamentary entities that extent both in the azimuthal and radial direction. These kpc scale filaments become magnetically (super-)critical very quickly and allow for the rapid formation of massive giant molecular clouds. Our simulations suggest that major differences in the behaviour of star formation – due to a varying magnetization – in galaxies could arise.

[1]  L. Fissel,et al.  Submillimeter and Far-Infrared Polarimetric Observations of Magnetic Fields in Star-Forming Regions , 2019, Front. Astron. Space Sci..

[2]  C. Federrath,et al.  The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function , 2019, Front. Astron. Space Sci..

[3]  Ulrich P. Steinwandel,et al.  Magnetic buoyancy in simulated galactic discs with a realistic circumgalactic medium , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  R. Klessen,et al.  The SILCC project – V. The impact of magnetic fields on the chemistry and the formation of molecular clouds , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  Romain Teyssier,et al.  A three-phase amplification of the cosmic magnetic field in galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  W. Schmidt,et al.  The Origin of Filamentary Star Forming Clouds in Magnetised Galaxies , 2018, 1805.08509.

[7]  F. Tabatabaei,et al.  Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097 , 2017, 1710.05695.

[8]  S. Khoperskov,et al.  Global enhancement and structure formation of the magnetic field in spiral galaxies , 2017, 1710.04307.

[9]  Xiaodan Fan,et al.  The Link between Magnetic-field Orientations and Star Formation Rates , 2017, 1706.08452.

[10]  Juan D. Soler,et al.  What are we learning from the relative orientation between density structures and the magnetic field in molecular clouds , 2017, 1705.00477.

[11]  R. Teyssier,et al.  A small-scale dynamo in feedback-dominated galaxies - II. The saturation phase and the final magnetic configuration , 2017, 1704.05845.

[12]  E. Tasker,et al.  On the effective turbulence driving mode of molecular clouds formed in disc galaxies , 2017, 1703.09709.

[13]  C. Federrath,et al.  The driving of turbulence in simulations of molecular cloud formation and evolution , 2017, 1703.07232.

[14]  J. Ostriker,et al.  Theoretical Challenges in Galaxy Formation , 2016, 1612.06891.

[15]  J. Zrake,et al.  Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy , 2016, 1610.08528.

[16]  Qizhou Zhang,et al.  MAGNETICALLY DOMINATED PARALLEL INTERSTELLAR FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506 , 2016, 1609.08052.

[17]  S. Lilly,et al.  FARADAY ROTATION MEASURE SYNTHESIS OF INTERMEDIATE REDSHIFT QUASARS AS A PROBE OF INTERVENING MATTER , 2016, 1604.00028.

[18]  B. Winkel,et al.  COLD MILKY WAY H i GAS IN FILAMENTS , 2016, 1602.07604.

[19]  H. Liu,et al.  WHAT IS CONTROLLING THE FRAGMENTATION IN THE INFRARED DARK CLOUD G14.225–0.506?: DIFFERENT LEVELS OF FRAGMENTATION IN TWIN HUBS , 2016, 1602.02500.

[20]  Gunther Lukat,et al.  A GPU accelerated Barnes-Hut Tree Code for FLASH4 , 2015, 1509.07370.

[21]  R. Teyssier,et al.  A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields – I. The kinematic phase , 2015, Monthly Notices of the Royal Astronomical Society.

[22]  G. W. Pratt,et al.  Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds , 2015, 1502.04123.

[23]  J. Peek,et al.  Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds. , 2015, Physical review letters.

[24]  Christoph Federrath,et al.  Inefficient star formation through turbulence, magnetic fields and feedback , 2015, 1504.03690.

[25]  R. Banerjee,et al.  Impact Of Magnetic Fields On Molecular Cloud Formation & Evolution , 2015, 1502.03306.

[26]  T. K. Sridharan,et al.  The Link Between Magnetic Fields and Cloud/Star Formation , 2014, 1404.2024.

[27]  J. Peek,et al.  MAGNETICALLY ALIGNED H i FIBERS AND THE ROLLING HOUGH TRANSFORM , 2013, 1312.1338.

[28]  C. B. Netterfield,et al.  AN IMPRINT OF MOLECULAR CLOUD MAGNETIZATION IN THE MORPHOLOGY OF THE DUST POLARIZED EMISSION , 2013, 1303.1830.

[29]  R. Beck,et al.  Magnetic Fields in the Milky Way and in Galaxies , 2013 .

[30]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[31]  P. Hennebelle,et al.  Turbulent molecular clouds , 2012, 1211.0637.

[32]  Klaus Dolag,et al.  Origin of strong magnetic fields in Milky Way-like galactic haloes , 2012, 1202.3349.

[33]  R. Klessen,et al.  Magnetic field amplification by small-scale dynamo action: dependence on turbulence models and Reynolds and Prandtl numbers. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  T. Henning,et al.  The alignment of molecular cloud magnetic fields with the spiral arms in M33 , 2011, Nature.

[35]  Christoph Federrath,et al.  A NEW JEANS RESOLUTION CRITERION FOR (M)HD SIMULATIONS OF SELF-GRAVITATING GAS: APPLICATION TO MAGNETIC FIELD AMPLIFICATION BY GRAVITY-DRIVEN TURBULENCE , 2011, 1102.0266.

[36]  P. Hennebelle,et al.  Molecular cloud evolution – IV. Magnetic fields, ambipolar diffusion and the star formation efficiency , 2011, 1101.3384.

[37]  Christian Klingenberg,et al.  A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear stability, implementation and tests , 2011, J. Comput. Phys..

[38]  E. Zweibel Magnetic Fields in Galaxies , 2010, Proceedings of the International Astronomical Union.

[39]  K. Dolag,et al.  SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES , 2009, 0911.3327.

[40]  R. Crutcher,et al.  Self-Consistent Analysis of OH Zeeman Observations , 2009, 0912.3024.

[41]  K. Dolag,et al.  Magnetic field structure due to the global velocity field in spiral galaxies , 2009, 0905.0351.

[42]  B. Gibson,et al.  GASS: THE PARKES GALACTIC ALL-SKY SURVEY. I. SURVEY DESCRIPTION, GOALS, AND INITIAL DATA RELEASE , 2009, 0901.1159.

[43]  E. Tasker,et al.  STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS , 2008, 0811.0207.

[44]  Richard M. Crutcher,et al.  CN Zeeman measurements in star formation regions , 2008 .

[45]  R. Klessen,et al.  From the warm magnetized atomic medium to molecular clouds , 2008, 0805.1366.

[46]  R. Crutcher,et al.  Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations , 2008, 0802.2253.

[47]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[48]  R. Klessen,et al.  Molecular Cloud Evolution. II. From Cloud Formation to the Early Stages of Star Formation in Decaying Conditions , 2006, astro-ph/0608375.

[49]  The formation of molecular clouds in spiral galaxies , 2006, astro-ph/0602103.

[50]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[51]  C. Heiles,et al.  The Millennium Arecibo 21 Centimeter Absorption-Line Survey. IV. Statistics of Magnetic Field, Column Density, and Turbulence , 2005, astro-ph/0501482.

[52]  E. Ostriker,et al.  Three-dimensional Simulations of Parker, Magneto-Jeans, and Swing Instabilities in Shearing Galactic Gas Disks , 2002, astro-ph/0208414.

[53]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[54]  H. Koyama,et al.  An Origin of Supersonic Motions in Interstellar Clouds , 2001, astro-ph/0112420.

[55]  H. Koyama,et al.  Molecular Cloud Formation in Shock-compressed Layers , 1999, astro-ph/9912509.

[56]  P. Padoan,et al.  A Super-Alfvénic Model of Dark Clouds , 1999, astro-ph/9901288.

[57]  Richard I. Klein,et al.  The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .

[58]  R. Crutcher Magnetic fields in molecular clouds , 2007 .

[59]  A. Tielens,et al.  The neutral atomic phases of the interstellar medium , 1995 .

[60]  R. Beck,et al.  Magnetic fields in spiral galaxies , 1990, 1509.04522.

[61]  B. Elmegreen Gravitational instabilities in shearing, magnetic galaxies with a cloudy interstellar gas , 1989 .

[62]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[63]  B. Elmegreen Parker instability in a self-gravitating gas layer , 1982 .

[64]  B. Elmegreen Formation of giant cloud complexes by the Parker-Jeans instability , 1982 .

[65]  L. Spitzer,et al.  Note on the collapse of magnetic interstellar clouds. , 1976 .

[66]  E. Parker The dynamical state of the interstellar gas and field. II. , 1966 .

[67]  L. Spitzer,et al.  Star formation in magnetic dust clouds , 1956 .