Penalty function versus non-penalty function methods for constrained nonlinear programming problems

The relative merits of using sequential unconstrained methods for solving: minimizef(x) subject togi(x) ⩾ 0, i = 1, ⋯, m, hj(x) = 0, j = 1, ⋯, p versus methods which handle the constraints directly are explored. Nonlinearly constrained problems are emphasized. Both classes of methods are analyzed as to parameter selection requirements, convergence to first and second-order Kuhn-Tucker Points, rate of convergence, matrix conditioning problems and computations required.

[1]  A. A. Goldstein,et al.  Newton's method for convex programming and Tchebycheff approximation , 1959, Numerische Mathematik.

[2]  J. B. Rosen The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints , 1960 .

[3]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[4]  J. B. Rosen The gradient projection method for nonlinear programming: Part II , 1961 .

[5]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[6]  A. Charnes OPTIMIZING ENGINEERING DESIGNS UNDER INEQUALITY CONSTRAINTS , 1962 .

[7]  G. Zoutendijk,et al.  Methods of Feasible Directions , 1962, The Mathematical Gazette.

[8]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[9]  R. R. Hocking,et al.  CONVEX PROGRAMMING BY TANGENTIAL APPROXIMATION , 1963 .

[10]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[11]  M. J. Box A New Method of Constrained Optimization and a Comparison With Other Methods , 1965, Comput. J..

[12]  Andrew B. Whinston,et al.  THE APPLICATION OF A NONLINEAR PROGRAMMING ALGORITHM TO A SECOND ORDER REPRESENTATION OF THE PROBLEM , 1966 .

[13]  Boris Polyak,et al.  Constrained minimization methods , 1966 .

[14]  J. Greenstadt A Ricocheting Gradient Method for Nonlinear Optimization , 1966 .

[15]  U. Passy,et al.  Generalized Polynomial Optimization , 1967 .

[16]  Clarence Zener,et al.  Geometric Programming : Theory and Application , 1967 .

[17]  J. E. Falk Lagrange multipliers and nonlinear programming , 1967 .

[18]  Douglass J. Wilde,et al.  Foundations of Optimization. , 1967 .

[19]  D. D. Morrison Optimization by Least Squares , 1968 .

[20]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[21]  E. M. L. Beale,et al.  Mathematical programming in practice , 1968 .

[22]  Auslender Méthodes du second ordre dans les problèmes d'optimisation avec contraintes , 1969 .

[23]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[24]  D. M. Ryan,et al.  A New Method for Constrained Optimization Problems , 1969, Oper. Res..

[25]  H. Künzi,et al.  Nichtlineare Optimierung : neuere Verfahren, Bibliographie , 1969 .

[26]  T. Pietrzykowski An Exact Potential Method for Constrained Maxima , 1969 .

[27]  F. J. Gould Extensions of Lagrange Multipliers in Nonlinear Programming , 1969 .

[28]  Harvey J. Greenberg,et al.  Surrogate Mathematical Programming , 1970, Oper. Res..

[29]  B. Martinet,et al.  Methodes Duales pour le Calcul du Minimum d'une Fonction Convexe sur une Intersection de Convexes , 1970 .

[30]  M. Powell A New Algorithm for Unconstrained Optimization , 1970 .

[31]  G. McCormick A Second Order Method for the Linearly Constrained Nonlinear Programming Problem , 1970 .

[32]  G. Zoutendijk Some Algorithms Based on the Principle of Feasible Directions , 1970 .

[33]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[34]  B. Eaves,et al.  Generalized Cutting Plane Algorithms , 1971 .

[35]  Robert E. Pugh A language for nonlinear programming problems , 1972, Math. Program..