Generating Well-Spaced Points on a Unit Simplex for Evolutionary Many-Objective Optimization
暂无分享,去创建一个
Kalyanmoy Deb | Julian Blank | Haitham Seada | Sunith Bandaru | Yashesh Dhebar | Yashesh D. Dhebar | K. Deb | Julian Blank | Sunith Bandaru | Haitham Seada | H. Seada
[1] Hisao Ishibuchi,et al. Riesz s-energy-based Reference Sets for Multi-Objective optimization , 2020, 2020 IEEE Congress on Evolutionary Computation (CEC).
[2] Rory A. Fisher,et al. The Arrangement of Field Experiments , 1992 .
[3] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[4] J. D. Loera,et al. Triangulations: Structures for Algorithms and Applications , 2010 .
[5] P. Prescott. Nearly Uniform Designs for Mixture Experiments , 2008 .
[6] M. Agha,et al. Experiments with Mixtures , 1992 .
[7] Russell R. Barton,et al. Ch. 7. A review of design and modeling in computer experiments , 2003 .
[8] E. Saff,et al. Discretizing Manifolds via Minimum Energy Points , 2004 .
[9] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[10] Kalyanmoy Deb,et al. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach , 2014, IEEE Transactions on Evolutionary Computation.
[11] Roland Schinzinger,et al. Conformal Mapping: Methods and Applications , 1991 .
[12] Lothar Thiele,et al. Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.
[13] J. Hammersley. MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .
[14] Michael T. M. Emmerich,et al. CRI-EMOA: A Pareto-Front Shape Invariant Evolutionary Multi-objective Algorithm , 2019, EMO.
[15] Hisao Ishibuchi,et al. How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison , 2018, Evolutionary Computation.
[16] Kalyanmoy Deb,et al. Generating Uniformly Distributed Points on a Unit Simplex for Evolutionary Many-Objective Optimization , 2019, EMO.
[17] Qingfu Zhang,et al. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.
[18] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[19] G. Box,et al. On the Experimental Attainment of Optimum Conditions , 1951 .
[20] E. Wegman. Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .
[21] E. Hughes. Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[22] C. R. Rao,et al. Factorial Experiments Derivable from Combinatorial Arrangements of Arrays , 1947 .
[23] Qguhm -DVNLHZLF,et al. On the performance of multiple objective genetic local search on the 0 / 1 knapsack problem . A comparative experiment , 2000 .
[24] Tapabrata Ray,et al. Distance-Based Subset Selection for Benchmarking in Evolutionary Multi/Many-Objective Optimization , 2019, IEEE Transactions on Evolutionary Computation.
[25] Gary B. Lamont,et al. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .
[26] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[27] Kalyanmoy Deb,et al. Pymoo: Multi-Objective Optimization in Python , 2020, IEEE Access.
[28] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[29] John E. Dennis,et al. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..
[30] Kalyanmoy Deb,et al. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.
[31] Y. Wang,et al. On number-theoretic method in statistics simulation , 2010 .
[32] E. Saff,et al. Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.
[33] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .