Exploring CP-violation in $Y=0$ inert triplet with real singlet

In this article, we examine the Standard Model extended with a $Y=0$ Higgs triplet and a real singlet. We consider the Higgs triplet to be odd under the $Z_2$ symmetry, and hence the lightest stable particle from the inert triplet becomes the dark matter candidate, whereas the real singlet is considered to be even under the $Z_2$ symmetry. A dimension-5 effective term is introduced with the help of a real singlet, which breaks the CP symmetry and gives an additional source of CP-violation in the fermion sector. The phase transition proceeds in two-steps, with the symmetry breaking in the singlet direction occurring first and later leading to the usual electroweak symmetry breaking minima, while electroweak baryogenesis is associated with the second step. The parameters chosen for the electroweak phase transition are found to be consistent with the Planck scale stability and the perturbativity using two-loop $\beta$-functions. The DM mass bound for inert triplet, i.e., 1.2 TeV (below which it is under abundance), also comes out to be consistent with the strongly first-order phase transition, which was not possible solely with inert triplet. The upper bound on the triplet mass comes out to be $\leq 3.8$ TeV, which satisfies the strongly first-order phase transition. This particular benchmark point also satisfies the correct baryon asymmetry of the Universe $(6.13 \times 10^{-11})$, and the gravitational wave spectrum also lies within the detectable frequency range of LISA $(6.978 \times 10^{-4} - 1.690 \times 10^{-2} )$ Hz and BBO $(2.80\times 10^{-3}-1.096)$ Hz experiments.

[1]  S. Jangid,et al.  Discerning singlet and triplet scalars at the electroweak phase transition and gravitational wave , 2021, Physical Review D.

[2]  A. Datta,et al.  Electroweak phase transition in the Z3-invariant NMSSM: Implications of LHC and Dark matter searches and prospects of detecting the gravitational waves , 2022, Journal of High Energy Physics.

[3]  L. Mittnacht,et al.  Filtered baryogenesis , 2021, Journal of High Energy Physics.

[4]  J. Cline,et al.  Electroweak baryogenesis from light fermion sources: A critical study , 2021, Physical Review D.

[5]  M. Aoki,et al.  Possibility of multi-step electroweak phase transition in the two Higgs doublet models , 2021, 2106.03439.

[6]  O. Gould,et al.  On the perturbative expansion at high temperature and implications for cosmological phase transitions , 2021, Journal of High Energy Physics.

[7]  T. Tenkanen,et al.  Singlet-assisted electroweak phase transition at two loops , 2021, 2103.07467.

[8]  T. Tenkanen,et al.  Robust approach to thermal resummation: Standard Model meets a singlet , 2021, Journal of High Energy Physics.

[9]  M. Carena,et al.  Nucleation is more than critical: A case study of the electroweak phase transition in the NMSSM , 2020, Journal of High Energy Physics.

[10]  G. White,et al.  Theoretical uncertainties for cosmological first-order phase transitions , 2020, Journal of High Energy Physics.

[11]  M. Mitra,et al.  Scrutinizing vacuum stability in IDM with Type-III inverse seesaw , 2020, Journal of High Energy Physics.

[12]  M. Ramsey-Musolf,et al.  Thermodynamics of a Two-Step Electroweak Phase Transition. , 2020, Physical review letters.

[13]  S. Jangid,et al.  Distinguishing inert Higgs doublet and inert triplet scenarios , 2020, The European Physical Journal C.

[14]  P. Dev,et al.  Vacuum stability in inert higgs doublet model with right-handed neutrinos , 2020, Journal of High Energy Physics.

[15]  K. Kainulainen,et al.  Electroweak baryogenesis at high bubble wall velocities , 2020, Physical Review D.

[16]  Hiren H. Patel,et al.  Electroweak phase transition in the real triplet extension of the SM: Dimensional reduction , 2019, Physical Review D.

[17]  Yiyang Zhang,et al.  Gravitational waves from first-order phase transition in a simple axion-like particle model , 2019, Journal of Cosmology and Astroparticle Physics.

[18]  N. Bell,et al.  Electroweak baryogenesis with vector-like leptons and scalar singlets , 2019, Journal of High Energy Physics.

[19]  Vahid Reza Shajiee,et al.  Electroweak phase transition, gravitational waves and dark matter in two scalar singlet extension of the standard model , 2018, The European Physical Journal C.

[20]  J. Ellis,et al.  On the maximal strength of a first-order electroweak phase transition and its gravitational wave signal , 2018, Journal of Cosmology and Astroparticle Physics.

[21]  C. Moutou,et al.  The HARPS search for southern extra-solar planets , 2004, Astronomy & Astrophysics.

[22]  E. Senaha,et al.  Standard model with a complex scalar singlet: Cosmological implications and theoretical considerations , 2017, 1707.09960.

[23]  P. Ko,et al.  Strong first order EWPT & strong gravitational waves in Z3-symmetric singlet scalar extension , 2017, 1706.09721.

[24]  M. Shaposhnikov,et al.  IUHET-273 3 D PHYSICS AND THE ELECTROWEAK PHASE TRANSITION : PERTURBATION THEORY , 2018 .

[25]  G. Servant,et al.  CP-violation for electroweak baryogenesis from dynamical CKM matrix , 2017, 1706.08534.

[26]  M. Perelstein,et al.  Dynamics of Electroweak Phase Transition In Singlet-Scalar Extension of the Standard Model , 2017, 1704.03381.

[27]  J. Shu,et al.  Gravitational wave signals of electroweak phase transition triggered by dark matter , 2017, 1702.02698.

[28]  G. Servant,et al.  Flavor cosmology: dynamical yukawas in the Froggatt-Nielsen mechanism , 2016, 1608.03254.

[29]  Ligong Bian,et al.  Impact of a complex singlet: Electroweak baryogenesis and dark matter , 2016 .

[30]  Antoine Petiteau,et al.  Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions , 2015, 1512.06239.

[31]  J. Kozaczuk,et al.  Electroweak Baryogenesis from Exotic Electroweak Symmetry Breaking , 2015, 1504.05195.

[32]  S. Huber,et al.  Numerical simulations of acoustically generated gravitational waves at a first order phase transition , 2015, 1504.03291.

[33]  Florian Staub,et al.  Exploring New Models in All Detail with SARAH , 2015, 1503.04200.

[34]  Jin Min Yang,et al.  New insights in the electroweak phase transition in the NMSSM , 2014, 1405.1152.

[35]  M. Krawczyk,et al.  IDMS: Inert Dark Matter Model with a complex singlet , 2014, 1412.8730.

[36]  Talal Ahmed Chowdhury,et al.  Sphalerons and the electroweak phase transition in models with higher scalar representations , 2014, 1409.4086.

[37]  David Curtin,et al.  Testing electroweak baryogenesis with future colliders , 2014, 1409.0005.

[38]  J. Kozaczuk,et al.  Cosmological phase transitions and their properties in the NMSSM , 2014, 1407.4134.

[39]  J. Giblin,et al.  Gravitational radiation from first-order phase transitions in the presence of a fluid , 2014, 1405.4005.

[40]  Talal Ahmed Chowdhury,et al.  Scalar representations in the light of electroweak phase transition and cold dark matter phenomenology , 2013, 1310.8152.

[41]  Florian Staub,et al.  SARAH 4: A tool for (not only SUSY) model builders , 2013, Comput. Phys. Commun..

[42]  S. Huber,et al.  Gravitational waves from the sound of a first order phase transition. , 2013, Physical review letters.

[43]  J. Giblin,et al.  Vacuum bubbles in the presence of a relativistic fluid , 2013, Journal of High Energy Physics.

[44]  J. Giblin,et al.  Vacuum bubbles in the presence of a relativistic fluid , 2013, 1310.2948.

[45]  Alessandro Strumia,et al.  Investigating the near-criticality of the Higgs boson , 2013, 1307.3536.

[46]  Hiren H. Patel,et al.  Color Breaking in the Early Universe , 2013, 1303.1140.

[47]  K. Kainulainen,et al.  Improved Electroweak Phase Transition with Subdominant Inert Doublet Dark Matter , 2013, 1302.2614.

[48]  M. Pierini,et al.  The light stop window , 2012, 1212.6847.

[49]  Hiren H. Patel,et al.  Stepping Into Electroweak Symmetry Breaking: Phase Transitions and Higgs Phenomenology , 2012, 1212.5652.

[50]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[51]  K. Krizka,et al.  Very light scalar top quarks at the LHC , 2012, 1212.4856.

[52]  Lian-tao Wang,et al.  125 GeV Higgs boson and electroweak phase transition model classes , 2012, 1209.1819.

[53]  M. Carena,et al.  MSSM electroweak baryogenesis and LHC data , 2012, 1207.6330.

[54]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[55]  M. Krawczyk,et al.  Inert Dark Matter and Strong Electroweak Phase Transition , 2012, 1207.0084.

[56]  G. Degrassi,et al.  Higgs mass and vacuum stability in the Standard Model at NNLO , 2012, 1205.6497.

[57]  Alejandro D. Sánchez,et al.  Gravitational waves from the electroweak phase transition , 2012, 1205.3070.

[58]  D. Borah,et al.  Inert doublet dark matter with strong electroweak phase transition , 2012, 1204.4722.

[59]  D. Curtin,et al.  Excluding electroweak baryogenesis in the MSSM , 2012, 1203.2932.

[60]  Timothy Cohen,et al.  Electroweak baryogenesis and Higgs signatures , 2012, 1203.2924.

[61]  A. Strumia,et al.  Higgs mass implications on the stability of the electroweak vacuum , 2011, 1112.3022.

[62]  Talal Ahmed Chowdhury,et al.  Dark matter as the trigger of strong electroweak phase transition , 2011, 1110.5334.

[63]  J. Espinosa,et al.  Electroweak Baryogenesis in Non-minimal Composite Higgs Models , 2011, 1110.2876.

[64]  Francesco Riva,et al.  Strong electroweak phase transitions in the Standard Model with a singlet , 2011, 1107.5441.

[65]  T. Araki,et al.  SIGNATURES OF DARK MATTER IN INERT TRIPLET MODELS , 2011, 1108.2753.

[66]  P. Chang,et al.  Electroweak Phase Transition and Baryogenesis , 2011 .

[67]  I. Ginzburg,et al.  Evolution of the Universe to the present inert phase , 2010, 1009.4593.

[68]  G. Servant,et al.  Energy budget of cosmological first-order phase transitions , 2010, 1004.4187.

[69]  J. Laskar,et al.  The HARPS search for southern extra-solar planets - XIX. Characterization and dynamics of the GJ 876 planetary system , 2010, 1001.4774.

[70]  R. Durrer,et al.  The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition , 2009, 0909.0622.

[71]  S. Kraml,et al.  Electroweak phase transition and LHC signatures in the singlet Majoron model , 2009, 0905.2559.

[72]  T. Kahniashvili,et al.  Gravitational Radiation Generated by Magnetic Fields in Cosmological Phase Transitions , 2009 .

[73]  A. Ashoorioon,et al.  Strong electroweak phase transitions without collider traces , 2009, 0904.0353.

[74]  D. Morrissey,et al.  Higgs Boson Signatures of MSSM Electroweak Baryogenesis , 2009, 0903.3038.

[75]  Francesco Sannino,et al.  Extra electroweak phase transitions from strong dynamics , 2009, 0901.0496.

[76]  Y. Maravin,et al.  Gravitational Radiation from Primordial Helical Inverse Cascade MHD Turbulence , 2008, 0809.1899.

[77]  S. Huber,et al.  Gravitational wave production by collisions: more bubbles , 2008, 0806.1828.

[78]  Y. Maravin,et al.  Detectability of gravitational waves from phase transitions , 2008, 0806.0293.

[79]  R. Durrer,et al.  Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach , 2007, 0711.2593.

[80]  M. Tytgat,et al.  Electroweak symmetry breaking induced by dark matter , 2007, 0707.0633.

[81]  Gabe Shaughnessy,et al.  Singlet Higgs phenomenology and the electroweak phase transition , 2007, 0705.2425.

[82]  Amine Ahriche What is the Criterion for a Strong First Order Electroweak Phase Transition in Singlet Models , 2007, hep-ph/0701192.

[83]  S. Huber,et al.  Baryogenesis in the Two-Higgs Doublet Model , 2006, hep-ph/0605242.

[84]  S. Huber,et al.  Top transport in electroweak baryogenesis , 2006, hep-ph/0604159.

[85]  R. Durrer,et al.  Gravitational waves from stochastic relativistic sources : primordial turbulence and magnetic fields , 2006, astro-ph/0603476.

[86]  M. Seco,et al.  MSSM electroweak baryogenesis and flavour mixing in transport equations , 2005, hep-ph/0505103.

[87]  S. Huber,et al.  The Baryon asymmetry in the Standard Model with a low cut-off , 2004, hep-ph/0412366.

[88]  C. Wagner,et al.  Electroweak Baryogenesis and Dark Matter in the nMSSM , 2004, hep-ph/0404184.

[89]  Michael G. Schmidt,et al.  Axial currents from CKM matrix CP violation and electroweak baryogenesis , 2003, hep-ph/0309291.

[90]  M. Carena,et al.  Supersymmetric CP violating currents and electroweak baryogenesis , 2000, hep-ph/0011055.

[91]  Michael G. Schmidt,et al.  Electroweak baryogenesis: Concrete in a SUSY model with a gauge singlet , 2000, hep-ph/0003122.

[92]  L. Yaffe,et al.  High temperature color conductivity at next-to-leading log order , 1999, hep-ph/9912306.

[93]  V. Sanz,et al.  Supersymmetric electroweak baryogenesis , 1999, hep-ph/9907460.

[94]  Z. Fodor,et al.  The end point of the first-order phase transition of the SU(2) gauge-Higgs model on a four-dimensional isotropic lattice , 1998, hep-lat/9809122.

[95]  M. Trodden Electroweak Baryogenesis , 1998, hep-ph/9803479.

[96]  A. Riotto Supersymmetric electroweak baryogenesis, non-equilibrium field theory and quantum Boltzmann equations , 1997, hep-ph/9712221.

[97]  A. Sakharov Violation of Cp-Invariance C-Asymmetry and Baryon Asymmetry of the Universe , 1998 .

[98]  G. Moore Computing the strong sphaleron rate , 1997, hep-ph/9705248.

[99]  M. Shaposhnikov,et al.  A non-perturbative analysis of the finite-T phase transition in SU (2) × U (1) electroweak theory , 1996, hep-lat/9612006.

[100]  Burjassot,et al.  BOSONIC THERMAL MASSES IN SUPERSYMMETRY , 1996, hep-ph/9606438.

[101]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[102]  Heidelberg,et al.  Is There a Hot Electroweak Phase Transition at mH >~ mW? , 1996, Physical review letters.

[103]  J. Weyers,et al.  A light stop and electroweak baryogenesis , 1996, hep-ph/9604440.

[104]  M. Carena,et al.  Opening the window for electroweak baryogenesis , 1996, hep-ph/9603420.

[105]  A. T. Davies,et al.  Electroweak baryogenesis in the next-to-minimal supersymmetric model , 1996, hep-ph/9603388.

[106]  Nelson,et al.  Electroweak baryogenesis in supersymmetric models. , 1995, Physical review. D, Particles and fields.

[107]  Huet,et al.  Electroweak baryogenesis and standard model CP violation. , 1994, Physical review. D, Particles and fields.

[108]  J. Bartels,et al.  The Electroweak Phase Transition , 1995 .

[109]  J. Kripfganz,et al.  Baryon asymmetry from a two stage electroweak phase transition? , 1994, hep-ph/9404272.

[110]  M. B. Gavela,et al.  Standard Model CP-violation and Baryon asymmetry , 1993, hep-ph/9312215.

[111]  Turner,et al.  Gravitational radiation from first-order phase transitions. , 1993, Physical review. D, Particles and fields.

[112]  A. Nelson,et al.  Progress in electroweak baryogenesis , 1993, hep-ph/9302210.

[113]  J. Espinosa,et al.  The electroweak phase transition with a singlet , 1993, hep-ph/9301285.

[114]  Turner,et al.  Gravitational radiation from colliding vacuum bubbles: Envelope approximation to many-bubble collisions. , 1992, Physical review. D, Particles and fields.

[115]  Watkins,et al.  Gravitational waves from first-order cosmological phase transitions. , 1992, Physical review letters.

[116]  D. Land,et al.  Two stage phase transition in two Higgs models , 1992, hep-ph/9208227.

[117]  Watkins,et al.  Gravitational radiation from colliding vacuum bubbles. , 1992, Physical review. D, Particles and fields.

[118]  Arnold,et al.  Sphalerons, small fluctuations, and baryon-number violation in electroweak theory. , 1987, Physical review. D, Particles and fields.

[119]  C. Hogan Gravitational radiation from cosmological phase transitions , 1986 .

[120]  V. Kuzmin,et al.  On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe , 1985 .

[121]  N. Manton,et al.  A saddle-point solution in the Weinberg-Salam theory , 1984 .

[122]  L. Okun VIOLATION OF CP INVARIANCE. , 1984 .

[123]  P. Steinhardt Relativistic Detonation Waves and Bubble Growth in False Vacuum Decay , 1982 .

[124]  P. Stevenson Optimized Perturbation Theory , 1981 .

[125]  E. Weinberg Radiative Corrections as the Origin of Spontaneous Symmetry Breaking , 1973, hep-th/0507214.