Effect of in-situ phase transition of (MgCoNiCuZn)O high-entropy oxides on microstructure and performance of Ag-based electrical contact materials

[1]  G. Ceder,et al.  High-entropy mechanism to boost ionic conductivity , 2022, Science.

[2]  Yanli Chang,et al.  Revealing the crucial role of skeleton restructuring on erosion dispersion of Ag–CuO contact materials , 2022, Applied Surface Science.

[3]  J. Schoenung,et al.  High entropy oxide (Co,Cu,Mg,Ni,Zn)O exhibits grain size dependent room temperature deformation , 2022, Materials Research Letters.

[4]  T. Shen,et al.  Study on the milling processes and sintering properties of Ag/SnO_2 electrical contact material with different micro-structured SnO_2 powders , 2022, Journal of Sol-Gel Science and Technology.

[5]  Xianjie Liu,et al.  Grid Structure Phase Change Composites with Effective Solar/Electro-Thermal Conversion for Multi-Functional Thermal Application , 2022, SSRN Electronic Journal.

[6]  W. Shao,et al.  Suppressing the Agglomeration of ZnO Nanoparticles in Air by Doping with Lower Electronegativity Metallic Ions: Implications for Ag/ZnO Electrical Contact Composites , 2022, ACS Applied Nano Materials.

[7]  J. Miao,et al.  High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery , 2022, Science.

[8]  Jingquan Liu,et al.  Solar-driven photoelectron injection effect on MgCo2O4@WO3 core–shell heterostructure for efficient overall water splitting , 2022, Applied Surface Science.

[9]  M. Minary‐Jolandan,et al.  Additive Manufacturing of Ceramic Materials for Energy Applications: Road Map and Opportunities , 2022, Journal of the European Ceramic Society.

[10]  Guijing Li,et al.  Interfacial thermal stress relief in Ag–SnO2 composites by in situ formation of CuO nanoparticles additive on SnO2 , 2022, Ceramics International.

[11]  Xudong Wang,et al.  Electrical explosion spray of Ag/C composite coating and its deposition behavior , 2021, Ceramics International.

[12]  K. Kim,et al.  Effect of heat treatment on microstructural heterogeneity and mechanical properties of 1%C-CoCrFeMnNi alloy fabricated by selective laser melting , 2021, Additive Manufacturing.

[13]  Liming Chen,et al.  Effect of Al atomic layer on the wetting behavior, interface structure and electrical contact properties of silver reinforced by Ti3AlC2 ceramic , 2021, Ceramics International.

[14]  K. Dahmen,et al.  Deformation behavior of a Co-Cr-Fe-Ni-Mo medium-entropy alloy at extremely low temperatures , 2021, Materials Today.

[15]  M. Guo,et al.  Exploration of the Influence Mechanism of La Doping on the Arc Erosion Resistance of Ag/SnO2 Contact Materials by a Laser-Simulated Arc , 2021, Journal of Materials Engineering and Performance.

[16]  Yan Chen,et al.  Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy , 2021, Nature Communications.

[17]  Wenqi Wang Facile hydrothermal synthesis of ZnCo2O4 nanostructures: controlled morphology and magnetic properties , 2021, Journal of Materials Science: Materials in Electronics.

[18]  U. Tamburini,et al.  Is configurational entropy the main stabilizing term in rock-salt Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide? , 2021, Nature Communications.

[19]  Z. Yuan,et al.  Microstructure and arc erosion behaviors of Ag-CuO contact material prepared by selective laser melting , 2021 .

[20]  X. Fang,et al.  Interface strengthening and fracture characteristics of the Ag-based contact materials reinforced with nanoporous SnO2(Cu, CuO) phases , 2021 .

[21]  J. Schoenung,et al.  Multiscale phase homogeneity in bulk nanocrystalline high entropy oxides , 2021 .

[22]  Li-Rong Zheng,et al.  A blockchain-based architecture for secure and trustworthy operations in the industrial Internet of Things , 2021 .

[23]  Tianyang Yang,et al.  Improved fracture resistance of the Ag/SnO2 contact materials using Cu nanoparticles as additive , 2020 .

[24]  Yi Feng,et al.  High-voltage arc erosion behavior and mechanism of Ti3AlC2 under different ambient atmospheres , 2020 .

[25]  T. Nagata,et al.  Exploring the First High-Entropy Thin Film Libraries: Composition Spread-Controlled Crystalline Structure. , 2020, ACS combinatorial science.

[26]  Huey-Jiuan Lin,et al.  Investigation of SiO2-B2O3-ZnO-Bi2O3 glass frits on the interface reaction of silver front contacts , 2020 .

[27]  Xiqian Yu,et al.  Hierarchical Defect Engineering for LiCoO2 through Low-Solubility Trace Element Doping , 2020, Chem.

[28]  Yong Zhu,et al.  Anisotropic arc erosion resistance of Ag/Ti3AlC2 composites induced by the alignment of Ti3AlC2 , 2020 .

[29]  Song Jiang,et al.  Arc erosion dynamic of island- and skeleton-restricted microstructure evolution modes in Ag–CuO contact materials , 2020 .

[30]  Ji-guang Li,et al.  Controllable phase/morphology tailoring of REF3 and NaREF4 (RE = La-Lu, Y), and insights into the up-conversion luminescence of GdF3:Yb3+/Tm3+ spheres , 2020, Advanced Powder Technology.

[31]  Xiaopeng Liang,et al.  Influence of La2Sn2O7 on wetting behavior of Ag/SnO2 composite materials , 2020, Journal of Alloys and Compounds.

[32]  C. Sedrati,et al.  Structural and optical transmittance analysis of CuO thin films deposited by the spray pyrolysis method , 2020, Solid State Sciences.

[33]  Chunping Wu,et al.  Influence of Operation Numbers on Arc Erosion of Ag/CdO Electrical Contact Materials , 2020, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[34]  S. Subramanian,et al.  Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: Magnetic constituents and surface anisotropy leading to lattice distortion , 2020, 2004.11684.

[35]  S. Curtarolo,et al.  High-entropy ceramics , 2020, Nature Reviews Materials.

[36]  Jian Chen,et al.  Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge , 2019, Corrosion Science.

[37]  Mengling Yang,et al.  Properties of Ag-SnO2 Contact Materials for Low-Voltage Electrical Appliances with Different Doped Particle Sizes , 2019, Advances in Materials Science and Engineering.

[38]  Yongqiang Kang,et al.  Resistance to arc erosion characteristics of CuO skeleton-reinforced Ag-CuO contact materials , 2018 .

[39]  Kenji Suzuki,et al.  Influence of opening velocity on various characteristics in DC high voltage Ag break arc , 2015, 2015 IEEE 61st Holm Conference on Electrical Contacts (Holm).

[40]  D. Bérardan,et al.  Synthesis of (MgCoNiCuZn)O entropy-stabilized oxides using solution-based routes: influence of composition on phase stability and functional properties , 2021, Journal of Materials Chemistry C.

[41]  A. Salimi,et al.  One-step synthesis of single-phase (Co, Mg, Ni, Cu, Zn) O High entropy oxide nanoparticles through SCS procedure: Thermodynamics and experimental evaluation , 2021 .

[42]  W. Rieder,et al.  Make erosion mechanism of Ag/CdO and Ag/SnO/sub 2/ contacts , 1991 .