An empirical evaluation of a walk-relax-round heuristic for mixed integer convex programs

Recently, a walk-and-round heuristic was proposed by Huang and Mehrotra (Comput Optim Appl, 2012) for generating high quality feasible solutions of mixed integer linear programs. This approach uses geometric random walks on a polyhedral set to sample points in this set. It subsequently rounds these random points using a heuristic, such as the feasibility pump. In this paper, the walk-and-round heuristic is further developed for the mixed integer convex programs (MICPs). Specifically, an outer approximation relaxation step is incorporated. The resulting approach is called a walk-relax-round heuristic. Computational results on problems from the CMU-IBM library show that the points generated from the random walk steps bring additional value. Specifically, the walk-relax-round heuristic using a long step Dikin walk found an optimal solution for 51 out of the 58 MICP test problems. In comparison, the feasibility pump heuristic starting at a continuous relaxation optimum found an optimal solution for 45 test problems. Computational comparisons with a commercial software Cplex 12.1 on mixed integer convex quadratic programs are also given. Our results show that the walk-relax-round heuristic is promising. This may be because the random walk points provide an improved outer approximation of the convex region.

[1]  Robert L. Smith,et al.  Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..

[2]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[3]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[4]  Robert L. Smith,et al.  Improving Hit-and-Run for global optimization , 1993, J. Glob. Optim..

[5]  Santosh S. Vempala,et al.  Sampling lattice points , 1997, STOC '97.

[6]  Yinyu Ye,et al.  A Computational Study of the Homogeneous Algorithm for Large-scale Convex Optimization , 1998, Comput. Optim. Appl..

[7]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[8]  László Lovász,et al.  Hit-and-run mixes fast , 1999, Math. Program..

[9]  Yinyu Ye,et al.  On a homogeneous algorithm for the monotone complementarity problem , 1999, Math. Program..

[10]  Egon Balas,et al.  Octane: A New Heuristic for Pure 0-1 Programs , 2001, Oper. Res..

[11]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[12]  Matteo Fischetti,et al.  Local branching , 2003, Math. Program..

[13]  Santosh S. Vempala,et al.  Hit-and-run from a corner , 2004, STOC '04.

[14]  Santosh S. Vempala,et al.  Solving convex programs by random walks , 2004, JACM.

[15]  Fred W. Glover,et al.  The feasibility pump , 2005, Math. Program..

[16]  Claude Le Pape,et al.  Exploring relaxation induced neighborhoods to improve MIP solutions , 2005, Math. Program..

[17]  Timo Berthold,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Improving the Feasibility Pump Improving the Feasibility Pump , 2022 .

[18]  S. Vempala Geometric Random Walks: a Survey , 2007 .

[19]  Matteo Fischetti,et al.  A feasibility pump heuristic for general mixed-integer problems , 2007, Discret. Optim..

[20]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[21]  Matteo Fischetti,et al.  Feasibility pump 2.0 , 2009, Math. Program. Comput..

[22]  Gérard Cornuéjols,et al.  A Feasibility Pump for mixed integer nonlinear programs , 2009, Math. Program..

[23]  Hariharan Narayanan,et al.  Random walks on polytopes and an affine interior point method for linear programming , 2009, STOC '09.

[24]  Hariharan Narayanan,et al.  Randomized Interior Point methods for Sampling and Optimization , 2009, ArXiv.

[25]  Robert L. Smith,et al.  Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles , 2009, Oper. Res..

[26]  Andrea Lodi,et al.  Experiments with a Feasibility Pump Approach for Nonconvex MINLPs , 2010, SEA.

[27]  Jordi Castro,et al.  Using the analytic center in the feasibility pump , 2011, Oper. Res. Lett..

[28]  Sanjay Mehrotra,et al.  Computational experience with a modified potential reduction algorithm for linear programming , 2012, Optim. Methods Softw..

[29]  Andrea Lodi,et al.  A storm of feasibility pumps for nonconvex MINLP , 2012, Mathematical Programming.

[30]  Pierre Bonami,et al.  Heuristics for convex mixed integer nonlinear programs , 2012, Comput. Optim. Appl..

[31]  Sanjay Mehrotra,et al.  An empirical evaluation of walk-and-round heuristics for mixed integer linear programs , 2013, Comput. Optim. Appl..

[32]  Joe Naoum-Sawaya Recursive central rounding for mixed integer programs , 2014, Comput. Oper. Res..

[33]  Sanjay Mehrotra,et al.  Solution of Monotone Complementarity and General Convex Programming Problems Using a Modified Potential Reduction Interior Point Method , 2017, INFORMS J. Comput..