Construction of Irregular LDPC Convolutional Codes with Fast Encoding

We propose a novel code design technique for irregular LDPC convolutional codes. The constructed codes can be encoded continuously in real time with the help of a shift-register based encoder. For moderate values of the syndrome former memory, simulation results show that the constructed codes outperform LDPC block codes with comparable hardware (processor) complexity.

[1]  Ali Emre Pusane,et al.  Decoders for low-density parity-check convolutional codes with large memory , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[2]  Daniel J. Costello,et al.  LDPC block and convolutional codes based on circulant matrices , 2004, IEEE Transactions on Information Theory.

[3]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[4]  Shu Lin,et al.  Error Control Coding , 2004 .

[5]  Duncan G. Elliott,et al.  Termination Sequence Generation Circuits for Low-Density Parity-Check Convolutional Codes , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[7]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[8]  Daniel A. Spielman,et al.  Analysis of low density codes and improved designs using irregular graphs , 1998, STOC '98.

[9]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[10]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[11]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[12]  Michael Lentmaier,et al.  Implementation aspects of LDPC convolutional codes , 2008, IEEE Transactions on Communications.

[13]  K.Sh. Zigangirov,et al.  Periodic time-varying convolutional codes with low-density parity-check matrices , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[14]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[15]  Michael Lentmaier,et al.  On the free distance of LDPC convolutional codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[16]  Xiaodai Dong,et al.  Low-density parity-check convolutional codes for Ethernet networks , 2005, PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005..

[17]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[18]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[19]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[20]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[21]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[22]  Michael Lentmaier,et al.  Reduced complexity decoding strategies for LDPC convolutional codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[23]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.