Identification of simple objects in image sequences

We present an investigation in the identification and location of simple objects in color image sequences. As an example the identification of traffic signs is discussed. Three aspects are of special interest. First regions have to be detected which may contain the object. The separation of those regions from the background can be based on color, motion, and contours. In the experiments all three possibilities are investigated. The second aspect focuses on the extraction of suitable features for the identification of the objects. For that purpose the border line of the region of interest is used. For planar objects a sufficient approximation of perspective projection is affine mapping. In consequence, it is near at hand to extract affine-invariant features from the border line. The investigation includes invariant features based on Fourier descriptors and moments. Finally, the object is identified by maximum likelihood classification. In the experiments all three basic object types are correctly identified. The probabilities for misclassification have been found to be below 1%