A Brief Review of Specialty Optical Fibers for Brillouin-Scattering-Based Distributed Sensors

Specialty optical fibers employed in Brillouin-based distributed sensors are briefly reviewed. The optical and acoustic waveguide properties of silicate glass optical fiber first are examined with the goal of constructing a designer Brillouin gain spectrum. Next, materials and their effects on the relevant Brillouin scattering properties are discussed. Finally, optical fiber configurations are reviewed, with attention paid to fibers for discriminative or other enhanced sensing configurations. The goal of this brief review is to reinforce the importance of fiber design to distributed sensor systems, generally, and to inspire new thinking in the use of fibers for this sensing application.

[1]  Jens Kobelke,et al.  Material and technology trends in fiber optics , 2014 .

[2]  E. Snitzer,et al.  An efficient single-mode Nd^3+ fiber laser prepared by the sol-gel method , 1994 .

[3]  Peter D. Dragic Distributed temperature sensing via Brillouin-tailored optical fiber , 2009, Defense + Commercial Sensing.

[4]  L. Thévenaz Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives , 2010 .

[5]  Shuisheng Jian,et al.  SMFs With a Ge/F Co-Doped Inner Core for SBS-Based Discriminative Sensing of Temperature and Strain , 2018, IEEE Sensors Journal.

[6]  B. Y. Kim,et al.  Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination. , 2015, Optics letters.

[7]  Steve Haake,et al.  The dispersion of birefringence in photoelastic materials , 1993 .

[8]  K. Shimizu,et al.  Development of a distributed sensing technique using Brillouin scattering , 1995 .

[9]  Ting Wang,et al.  Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber , 2018, Sensors.

[10]  J. Ballato,et al.  Brillouin spectroscopy of a novel baria-doped silica glass optical fiber. , 2013, Optics express.

[11]  J. Bass,et al.  The complex mechanical modulus as a structural probe: The case of alkali borate liquids and glasses , 1995 .

[12]  S. Hunklinger,et al.  Internal friction and hypersonic velocity in vitreous germania under high pressure , 1998 .

[13]  A. Peacock,et al.  Highly nonlinear yttrium-aluminosilicate optical fiber with a high intrinsic stimulated Brillouin scattering threshold. , 2017, Optics letters.

[14]  J. Ballato,et al.  Brillouin spectroscopy of YAG-derived optical fibers. , 2010, Optics express.

[15]  B. M. A. Rahman,et al.  Tailoring light-sound interactions in a single mode fiber for the high-power transmission or sensing applications , 2018, International Conference on Photonics Solutions.

[16]  A. Safaai-Jazi,et al.  Leaky Modes in Weakly Guiding Fiber Acoustic Waveguides , 1986, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  Kentaro Nakamura,et al.  Brillouin Scattering in Polymer Optical Fibers: Fundamental Properties and Potential Use in Sensors , 2011 .

[18]  Y Azuma,et al.  Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements. , 1988, Optics letters.

[19]  Alain Shang,et al.  Acoustic Characterization of Silica Glasses , 1993 .

[20]  Peter D Dragic Brillouin Gain Reduction Via B $_{2}$ O $_{3}$ Doping , 2011 .

[21]  John Ballato,et al.  120 Years of Optical Glass Science , 2014 .

[22]  John Ballato,et al.  A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map , 2018 .

[23]  Steve W. Martin,et al.  On the Anomalously Strong Dependence of the Acoustic Velocity of Alumina on Temperature in Aluminosilicate Glass Optical Fibers—Part I: Material Modeling and Experimental Validation , 2016 .

[24]  J. Ballato,et al.  On the thermo-optic coefficient of P_2O_5 in SiO_2 , 2017 .

[25]  Zuyuan He,et al.  Effect of Draw-Induced Residual Elastic and Inelastic Strains on Brillouin Frequency Shift in Optical Fibers , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[26]  Charles Krischer,et al.  Optical Measurements of Ultrasonic Attenuation and Reflection Losses in Fused Silica , 1970 .

[27]  E. Lara‐Curzio,et al.  Physical and Mechanical Properties of Barium Alkali Silicate Glasses for SOFC Sealing Applications , 2012 .

[28]  S. M. Maughan,et al.  Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter , 2001 .

[29]  António Barrias,et al.  A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications , 2016, Sensors.

[30]  Acoustic longitudinal mode coupling in w-shaped Al/Ge Co-doped fibre , 2011 .

[31]  André Croteau,et al.  Acoustic coefficients of P_2O_5-doped silica fiber: the strain-optic and strain-acoustic coefficients , 2012 .

[32]  A. Yablon Optical and mechanical effects of frozen-in stresses and strains in optical fibers , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Liang Dong,et al.  Limits of Stimulated Brillouin Scattering Suppression in Optical Fibers With Transverse Acoustic Waveguide Designs , 2010, Journal of Lightwave Technology.

[34]  J. Kushibiki,et al.  Acoustic microscopy of cladded optical fibers , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[35]  Zuyuan He,et al.  Two-Dimensional Finite-Element Modal Analysis of Brillouin Gain Spectra in Optical Fibers , 2006, IEEE Photonics Technology Letters.

[36]  X. Bao,et al.  Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber. , 2016, Optics letters.

[37]  M. Ohashi,et al.  Design of strain-free-fiber with nonuniform dopant concentration for stimulated Brillouin scattering suppression , 1993 .

[38]  L. Thévenaz,et al.  Brillouin gain spectrum characterization in single-mode optical fibers , 1997 .

[39]  Songnian Fu,et al.  Few-mode optical fiber based simultaneously distributed curvature and temperature sensing. , 2017, Optics express.

[40]  J. Ballato,et al.  Additivity of the coefficient of thermal expansion in silicate optical fibers. , 2017, Optics letters.

[41]  John Ballato,et al.  Glass and Process Development for the Next Generation of Optical Fibers: A Review , 2017 .

[42]  Liang Chen,et al.  Recent Progress in Brillouin Scattering Based Fiber Sensors , 2011, Sensors.

[43]  Yuh-Shiuan Liu,et al.  Acoustic coefficients of P_2O_5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient , 2011 .

[44]  V Laude,et al.  Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber. , 2007, Optics express.

[45]  Xiaoyi Bao,et al.  Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber. , 2009, Optics letters.

[46]  Luc Thévenaz,et al.  Distributed fiber‐optic temperature sensing for hydrologic systems , 2006 .

[47]  R. Meister,et al.  Pressure derivatives of elastic moduli of fused quartz to 10 kb , 1967 .

[48]  J. Ballato Molten core fabrication of novel optical fibers , 2013 .

[49]  J. Ballato,et al.  Pockels’ coefficients of alumina in aluminosilicate optical fiber , 2013 .

[50]  Ming-Jun Li,et al.  Novel optical fibers for distributed sensor applications , 2017, 2017 25th Optical Fiber Sensors Conference (OFS).

[51]  D. Gerlich,et al.  Second pressure derivatives of the elastic moduli of fused quartz , 1978 .

[52]  Ming Tang,et al.  Demonstration of distributed shape sensing based on Brillouin scattering in multi-core fibers , 2017, 2017 25th Optical Fiber Sensors Conference (OFS).

[53]  E. Snitzer Cylindrical Dielectric Waveguide Modes , 1961 .

[54]  Takemi Hasegawa,et al.  The First 0.14-dB/km Loss Optical Fiber and its Impact on Submarine Transmission , 2018, Journal of Lightwave Technology.

[55]  Kentaro Nakamura,et al.  Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber. , 2014, Optics express.

[56]  C. Jen,et al.  Role of guided acoustic wave properties in single-mode optical fibre design , 1988 .

[57]  S Ramachandran,et al.  SBS gain efficiency measurements and modeling in a 1714 mum(2) effective area LP(08) higher-order mode optical fiber. , 2007, Optics express.

[58]  Iwao Hatakeyama,et al.  Very low OH content P2O5-doped silica fibres , 1979 .

[59]  Liping Huang,et al.  Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression , 2015, Scientific Reports.

[60]  Peter D. Dragic Brillouin spectroscopy of Nd–Ge co-doped silica fibers , 2009 .

[61]  X. Bao,et al.  Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber. , 1994, Optics letters.

[62]  Ayman F. Abouraddy,et al.  Multimaterial Fibers , 2022 .

[63]  M. Paul,et al.  Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers , 2012 .

[64]  P. Krippner,et al.  Distributed Temperature Sensing: Review of Technology and Applications , 2012, IEEE Sensors Journal.

[65]  Zuyuan He,et al.  Distributed discrimination of strain and temperature based on Brillouin dynamic grating in an optical fiber , 2013 .

[66]  Kenneth T. V. Grattan,et al.  Fiber optic sensor technology: an overview , 2000 .

[67]  K. Kao,et al.  Dielectric-fibre surface waveguides for optical frequencies , 1986 .

[68]  P. Vasantharani,et al.  Structural and Elastic Studies of Strontium Doped Manganese Borate Glasses , 2017 .

[69]  S. Ouaskit,et al.  Effect of Sodium Oxide Modifier on Structural and Elastic Properties of Silicate Glass. , 2016, The journal of physical chemistry. B.

[70]  A. Ballato,et al.  A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties , 2018 .

[71]  X. Bao,et al.  Dependence of the brillouin frequency shift on strain and temperature in a photonic crystal fiber. , 2004, Optics letters.

[72]  Shenping Li,et al.  Dual Core Optical Fiber for Distributed Brillouin Fiber Sensors , 2014, 2014 Asia Communications and Photonics Conference (ACP).

[73]  Kentaro Nakamura,et al.  Simplified Configuration of Brillouin Optical Correlation-Domain Reflectometry , 2014, IEEE Photonics Journal.

[74]  Benjamin Ward,et al.  Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles. , 2009, Optics express.

[75]  John Ballato,et al.  A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering , 2018 .

[76]  Yosuke Mizuno,et al.  Brillouin scattering in multi-core optical fibers for sensing applications , 2015, Scientific reports.

[77]  Kazuo Hotate,et al.  Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding. , 2007, Optics letters.

[78]  Masaharu Ohashi,et al.  Performance of strain-free stimulated Brillouin scattering suppression fiber , 1996 .

[79]  H. Kee,et al.  All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering. , 2000, Optics letters.

[80]  Yoshiaki Yamauchi,et al.  Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh system , 2014 .

[81]  B. M. Azizur Rahman,et al.  Full-Vectorial Finite-Element Analysis of Acoustic Modes in Silica Waveguides , 2014, IEEE Journal of Quantum Electronics.

[82]  John Ballato,et al.  Rethinking Optical Fiber: New Demands, Old Glasses , 2013 .

[83]  Peter D. Dragic The Acoustic Velocity of Ge‐Doped Silica Fibers: A Comparison of Two Models , 2010 .

[84]  D. Gloge,et al.  Dispersion in weakly guiding fibers. , 1971, Applied optics.

[85]  Mikel Sagues,et al.  Cost-Effective Brillouin Optical Time-Domain Analysis Sensor Using a Single Optical Source and Passive Optical Filtering , 2016, J. Sensors.

[86]  Luc Thévenaz,et al.  Distributed shape sensing using Brillouin scattering in multi-core fibers. , 2016, Optics express.

[87]  J. R. Stevens,et al.  Determination of elastic constants in isotropic silicate glasses by Brillouin scattering , 1973 .

[88]  J. Ballato,et al.  Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber , 2016, Journal of Lightwave Technology.

[89]  Yongkang Dong,et al.  High-Spatial-Resolution Time-Domain Simultaneous Strain and Temperature Sensor Using Brillouin Scattering and Birefringence in a Polarization-Maintaining Fiber , 2010, IEEE Photonics Technology Letters.

[90]  C. Jen,et al.  Backward collinear guided-wave-acousto-optic interactions in single-mode fibers , 1989 .

[91]  Lufan Zou,et al.  Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core. , 2003, Optics letters.

[92]  S. Loranger,et al.  Stimulated Brillouin scattering in SM ZBLAN fiber , 2013 .

[93]  Kazuo Hotate,et al.  Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers. , 2008, Optics express.

[94]  M. Ferrari,et al.  Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2 , 2008 .

[95]  Nori Shibata,et al.  Longitudinal acoustic modes and Brillouin-gain spectra for GeO 2 -doped-core single-mode fibers , 1989 .

[96]  M. Zervas,et al.  High Power Fiber Lasers: A Review , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[97]  J. Ballato,et al.  Sapphire-derived all-glass optical fibres , 2012 .

[98]  S. Chi,et al.  Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift , 2001, IEEE Photonics Technology Letters.

[99]  Two-dimensional FEM Analysis of Brillouin Gain Spectra in Acoustic Guiding and Antiguiding Single Mode Optical Fibers , 2010 .

[100]  John Ballato,et al.  The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers , 2013 .

[101]  The Brillouin gain of vector modes in a few-mode fiber , 2017, Scientific Reports.

[102]  M. Tsuchiya,et al.  Stimulated Brillouin Scattering in a Single-Mode Tellurite Fiber for Amplification, Lasing, and Slow Light Generation , 2008, Journal of Lightwave Technology.

[103]  Jose M. Lopez-Higuera,et al.  Brillouin Distributed Fiber Sensors: An Overview and Applications , 2012, J. Sensors.

[104]  M. Tur,et al.  [INVITED] State of the art of Brillouin fiber-optic distributed sensing , 2016 .

[105]  G. Stegeman,et al.  Normal acoustic modes and Brillouin scattering in single-mode optical fibers , 1979 .

[106]  Steve W. Martin,et al.  On the Anomalously Strong Dependence of the Acoustic Velocity of Alumina on Temperature in Aluminosilicate Glass Optical Fibers-Part II: Acoustic Properties of Alumina and Silica Polymorphs, and Approximations of the Glassy State , 2016 .

[107]  W. Chujo,et al.  Simulating and designing Brillouin gain spectrum in single-mode fibers , 2004, Journal of Lightwave Technology.

[108]  C. Weigel,et al.  Elastic moduli of XAlSiO4 aluminosilicate glasses: effects of charge-balancing cations , 2016 .

[109]  Shibin Jiang,et al.  Novel distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering , 2007 .

[110]  Zuyuan He,et al.  Demonstration of Brillouin Distributed Discrimination of Strain and Temperature Using a Polarization-Maintaining Optical Fiber , 2010, IEEE Photonics Technology Letters.

[111]  Shibin Jiang,et al.  Measurement of the stimulated Brillouin scattering gain coefficient of a phosphate fiber , 2007, SPIE OPTO.

[112]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[113]  N Lagakos,et al.  Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering. , 1980, Applied optics.

[114]  Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers , 2008 .

[115]  Zuyuan He,et al.  Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). , 2008, Optics express.

[116]  I. Yaacov,et al.  Thermoelastic properties of ULE® titanium silicate glass , 1976 .

[117]  W. P. Mason Physical Acoustics and the Properties of Solids , 1956 .

[118]  J. Fleming Dispersion in GeO2-SiO2 glasses. , 1984, Applied optics.

[119]  Z. Pan,et al.  Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers. , 2015, Optics express.

[120]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[121]  Xiaoyi Bao,et al.  Brillouin Spectrum in LEAF and Simultaneous Temperature and Strain Measurement , 2012, Journal of Lightwave Technology.

[122]  John Ballato,et al.  Longitudinally-graded optical fibers , 2012, IEEE Photonics Conference 2012.

[123]  Sophie LaRochelle,et al.  Multi-parameter sensing based on the stimulated Brillouin scattering of higher-order acoustic modes in OAM fiber , 2015, International Conference on Optical Fibre Sensors.

[124]  M. Ohashi,et al.  Sound velocity measurement based on guided acoustic-wave Brillouin scattering , 1992, IEEE Photonics Technology Letters.

[125]  Merz,et al.  Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures. , 1992, Physical review. B, Condensed matter.

[126]  Peter D. Dragic Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing , 2009, LASE.

[127]  Zuyuan He,et al.  Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. , 2009, Optics express.

[128]  J. Bass,et al.  Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG , 2015 .

[129]  John Ballato,et al.  Chirped fiber Brillouin frequency-domain distributed sensing , 2014 .

[130]  K. Abedin Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. , 2005, Optics express.

[131]  P. Dragic,et al.  Accurate Modeling of the Intrinsic Brillouin Linewidth via Finite-Element Analysis , 2010, IEEE Photonics Technology Letters.

[132]  J. Ballato,et al.  Spinel-derived single mode optical fiber , 2013 .

[133]  Zuyuan He,et al.  Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding. , 2008, Optics express.

[134]  Marcelo A. Soto,et al.  Impact of the Fiber Coating on the Temperature Response of Distributed Optical Fiber Sensors at Cryogenic Ranges , 2018, Journal of Lightwave Technology.

[135]  J. Ballato,et al.  Glass: The Carrier of Light ‐ A Brief History of Optical Fiber , 2016 .

[136]  R. Stolen,et al.  Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing. , 2015, Optics letters.

[137]  Huijuan Dong,et al.  Effects of Polymer Coatings on Temperature Sensitivity of Brillouin Frequency Shift Within Double-Coated Fibers , 2013, IEEE Sensors Journal.

[138]  Liang Chen,et al.  Recent Progress in Distributed Fiber Optic Sensors , 2012, Sensors.

[139]  Byoungho Lee,et al.  Review of the present status of optical fiber sensors , 2003 .

[140]  Bera Pálsdóttir,et al.  Acoustic index of Ge-doped optical fibers. , 2009, Optics letters.

[141]  Xiaoyi Bao,et al.  Distributed Strain and Temperature Measurement by Brillouin Beat Spectrum , 2013, IEEE Photonics Technology Letters.

[142]  C. K. Jen Similarities and Differences Between Fiber Acoustics and Fiber Optics , 1985, IEEE 1985 Ultrasonics Symposium.

[143]  K. Schuster,et al.  Brillouin scattering properties of lanthano-aluminosilicate optical fiber. , 2014, Applied optics.

[144]  Alan S. Pine,et al.  Brillouin Scattering Study of Acoustic Attenuation in Fused Quartz , 1969 .

[145]  T. Parker,et al.  A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter , 1997, IEEE Photonics Technology Letters.

[146]  A. Ballato,et al.  A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. B. The Optical Fiber, Material Additivity and the Nonlinear Coefficients , 2018 .

[147]  Peter D Dragic,et al.  Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers. , 2010, Optics express.

[148]  D. Burkhard Elastic properties of alkali silicate glasses with iron oxide: Relation to glass structure , 1997 .

[149]  A numerical analysis of GeO 2 -doped multi-step index single-mode fiber for stimulated Brillouin scattering , 2018 .

[150]  Peter D. Dragic Simplified model for effect of Ge doping on silica fibre acoustic properties , 2009 .