Certified Parallelotope Continuation for One-Manifolds
暂无分享,去创建一个
Alexandre Goldsztejn | Benjamin Martin | Laurent Granvilliers | Christophe Jermann | A. Goldsztejn | C. Jermann | Benjamin Martin | Laurent Granvilliers
[1] W. Rheinboldt. On a theorem of S. Smale about Newton's method for analytic mappings , 1988 .
[2] Daisuke Ishii,et al. Interval-based projection method for under-constrained numerical systems , 2012, Constraints.
[3] Alexandre Goldsztejn,et al. Including Ordinary Differential Equations Based Constraints in the Standard CP Framework , 2010, CP.
[4] Dominique Michelucci,et al. A New Robust Algorithm to Trace Curves , 2007, Reliab. Comput..
[5] S. Smale. Newton’s Method Estimates from Data at One Point , 1986 .
[6] Ilse C. F. Ipsen,et al. Condition Estimates for Pseudo-Arclength Continuation , 2006, SIAM J. Numer. Anal..
[7] Jean-Daniel Boissonnat,et al. Triangulating Smooth Submanifolds with Light Scaffolding , 2010, Math. Comput. Sci..
[8] Angewandte Mathematik,et al. Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems , 2011 .
[9] W. Rheinboldt. Numerical analysis of continuation methods for nonlinear structural problems , 1981 .
[10] E. Allgower,et al. Introduction to Numerical Continuation Methods , 1987 .
[11] Luc Jaulin,et al. Inner Approximation of the Range of Vector-Valued Functions , 2010, Reliab. Comput..
[12] Alex M. Andrew,et al. Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .
[13] O. Knüppel,et al. PROFIL/BIAS—A fast interval library , 1994, Computing.
[14] Anton Leykin,et al. Certified Numerical Homotopy Tracking , 2009, Exp. Math..
[15] Siegfried M. Rump,et al. A Note on Epsilon-Inflation , 1998, Reliab. Comput..
[16] Alexandre Goldsztejn. A branch and prune algorithm for the approximation of non-linear AE-solution sets , 2006, SAC '06.
[17] M. C. Recchioni. Modified Newton method in circular interval arithmetic , 1995 .
[18] Jean-Pierre Merlet,et al. Parallel Robots , 2000 .
[19] E. Walter,et al. Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .
[20] R. B. Kearfott,et al. An Interval Step Control for Continuation Methods , 1994 .
[21] Frédéric Benhamou,et al. Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques , 2006, TOMS.
[22] C. A. Coello Coello,et al. Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems , 2008 .
[23] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[24] C. Hillermeier. Generalized Homotopy Approach to Multiobjective Optimization , 2001 .
[25] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[26] A. Neumaier. Interval methods for systems of equations , 1990 .
[27] B. Ram,et al. On a theorem of S , 2003 .
[28] Alexandre Goldsztejn,et al. A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutions , 2008, CP.
[29] Werner C. Rheinboldt,et al. Solution Fields of Nonlinear Equations and Continuation Methods , 1980 .
[30] A. Gončar,et al. ON A THEOREM OF SAFF , 1974 .
[31] Michael E. Henderson,et al. Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.
[32] R. B. Kearfott,et al. Interval Computations: Introduction, Uses, and Resources , 2000 .