Certified Parallelotope Continuation for One-Manifolds

Starting from an initial solution, continuation methods efficiently produce a sequence of points on a manifold typically defined as the solution set of an underconstrained system of equations. They have a wide range of applications ranging from curve plotting to polynomial root-finding by homotopy. However, classical methods cannot guarantee that the returned points all belong to the same connected component of the manifold, i.e., they may jump from one component to another. Trying to overcome this issue has given birth to several sophisticated heuristics on the one hand and to guaranteed methods based on rigorous computations on the other hand. In this paper we introduce a new rigorous predictor corrector continuation method based on interval computations. Its novelty lies in the fact that it uses parallelotopes as defined in A. Goldsztejn and L. Granvilliers, A new framework for sharp and efficient resolution of NCSP with manifolds of solutions, Constraints, 15 (2010), pp. 190--212, to enclose consecuti...

[1]  W. Rheinboldt On a theorem of S. Smale about Newton's method for analytic mappings , 1988 .

[2]  Daisuke Ishii,et al.  Interval-based projection method for under-constrained numerical systems , 2012, Constraints.

[3]  Alexandre Goldsztejn,et al.  Including Ordinary Differential Equations Based Constraints in the Standard CP Framework , 2010, CP.

[4]  Dominique Michelucci,et al.  A New Robust Algorithm to Trace Curves , 2007, Reliab. Comput..

[5]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[6]  Ilse C. F. Ipsen,et al.  Condition Estimates for Pseudo-Arclength Continuation , 2006, SIAM J. Numer. Anal..

[7]  Jean-Daniel Boissonnat,et al.  Triangulating Smooth Submanifolds with Light Scaffolding , 2010, Math. Comput. Sci..

[8]  Angewandte Mathematik,et al.  Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems , 2011 .

[9]  W. Rheinboldt Numerical analysis of continuation methods for nonlinear structural problems , 1981 .

[10]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[11]  Luc Jaulin,et al.  Inner Approximation of the Range of Vector-Valued Functions , 2010, Reliab. Comput..

[12]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[13]  O. Knüppel,et al.  PROFIL/BIAS—A fast interval library , 1994, Computing.

[14]  Anton Leykin,et al.  Certified Numerical Homotopy Tracking , 2009, Exp. Math..

[15]  Siegfried M. Rump,et al.  A Note on Epsilon-Inflation , 1998, Reliab. Comput..

[16]  Alexandre Goldsztejn A branch and prune algorithm for the approximation of non-linear AE-solution sets , 2006, SAC '06.

[17]  M. C. Recchioni Modified Newton method in circular interval arithmetic , 1995 .

[18]  Jean-Pierre Merlet,et al.  Parallel Robots , 2000 .

[19]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[20]  R. B. Kearfott,et al.  An Interval Step Control for Continuation Methods , 1994 .

[21]  Frédéric Benhamou,et al.  Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques , 2006, TOMS.

[22]  C. A. Coello Coello,et al.  Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems , 2008 .

[23]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[24]  C. Hillermeier Generalized Homotopy Approach to Multiobjective Optimization , 2001 .

[25]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[26]  A. Neumaier Interval methods for systems of equations , 1990 .

[27]  B. Ram,et al.  On a theorem of S , 2003 .

[28]  Alexandre Goldsztejn,et al.  A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutions , 2008, CP.

[29]  Werner C. Rheinboldt,et al.  Solution Fields of Nonlinear Equations and Continuation Methods , 1980 .

[30]  A. Gončar,et al.  ON A THEOREM OF SAFF , 1974 .

[31]  Michael E. Henderson,et al.  Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.

[32]  R. B. Kearfott,et al.  Interval Computations: Introduction, Uses, and Resources , 2000 .