Zero-field nuclear magnetic resonance of chemically exchanging systems

[1]  J. Hövener,et al.  Simulating Non-linear Chemical and Physical (CAP) Dynamics of Signal Amplification By Reversible Exchange (SABRE). , 2019, Chemistry.

[2]  A. Wickenbrock,et al.  Zero-Field Magnetometry Based on Nitrogen-Vacancy Ensembles in Diamond , 2018, Physical Review Applied.

[3]  L. Gladden,et al.  Scalar relaxation of NMR transitions at ultralow magnetic field. , 2019, Journal of magnetic resonance.

[4]  A. Comment,et al.  In Vivo Hyperpolarized 13C MRS and MRI Applications , 2018 .

[5]  L. Gladden,et al.  NMR relaxation in porous materials at zero and ultralow magnetic fields. , 2018, Journal of magnetic resonance.

[6]  K. Brindle,et al.  Photogenerated Radical in Phenylglyoxylic Acid for in Vivo Hyperpolarized 13C MR with Photosensitive Metabolic Substrates , 2018, Journal of the American Chemical Society.

[7]  Mark A. Johnson,et al.  Tag-Free and Isotopomer-Selective Vibrational Spectroscopy of the Cryogenically Cooled H9O4+ Cation with Two-Color, IR-IR Double-Resonance Photoexcitation: Isolating the Spectral Signature of a Single OH Group in the Hydronium Ion Core. , 2018, The journal of physical chemistry. A.

[8]  K. Keshari,et al.  A non-synthetic approach to extending the lifetime of hyperpolarized molecules using D2O solvation. , 2018, Journal of magnetic resonance.

[9]  Andrei I Holodny,et al.  Metabolic Imaging of the Human Brain with Hyperpolarized 13C Pyruvate Demonstrates 13C Lactate Production in Brain Tumor Patients. , 2018, Cancer research.

[10]  Niall Holmes,et al.  Moving magnetoencephalography towards real-world applications with a wearable system , 2018, Nature.

[11]  J. Kurhanewicz,et al.  Non-invasive detection of divergent metabolic signals in insulin deficiency vs. insulin resistance in vivo , 2018, Scientific Reports.

[12]  Ilwoo Park,et al.  Development of methods and feasibility of using hyperpolarized carbon‐13 imaging data for evaluating brain metabolism in patient studies , 2018, Magnetic resonance in medicine.

[13]  G. Boero,et al.  Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates , 2017, Nature Communications.

[14]  Sun Mi Park,et al.  Real-time quantitative analysis of metabolic flux in live cells using a hyperpolarized micromagnetic resonance spectrometer , 2017, Science Advances.

[15]  Szymon Pustelny,et al.  Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field. , 2017, The Review of scientific instruments.

[16]  Dmitry Budker,et al.  13C-Decoupled J-Coupling Spectroscopy Using Two-Dimensional Nuclear Magnetic Resonance at Zero-Field. , 2017, The journal of physical chemistry letters.

[17]  P. Sidebottom Antony J. Williams, Gary E. Martin and David Rovnyak (Eds): Modern NMR Approaches to the Structure Elucidation of Natural Products, Volume 1: Instrumentation and Software , 2017, Chromatographia.

[18]  J. Blanchard,et al.  Antisymmetric Couplings Enable Direct Observation of Chirality in Nuclear Magnetic Resonance Spectroscopy. , 2016, The journal of physical chemistry letters.

[19]  J. Blanchard,et al.  Zero- to Ultralow-Field NMR , 2016 .

[20]  D. Budker,et al.  Transition-Selective Pulses in Zero-Field Nuclear Magnetic Resonance. , 2016, The journal of physical chemistry. A.

[21]  E. Chekmenev,et al.  15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[22]  E. Chekmenev,et al.  Microtesla SABRE Enables 10% Nitrogen-15 Nuclear Spin Polarization , 2015, Journal of the American Chemical Society.

[23]  David N. Beratan,et al.  Biochemistry and Theory of Proton-Coupled Electron Transfer , 2014, Chemical reviews.

[24]  Y. Yen,et al.  In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1‐13C] and [2‐13C]pyruvate , 2013, NMR in biomedicine.

[25]  Jean-Noël Hyacinthe,et al.  Hyperpolarization without persistent radicals for in vivo real-time metabolic imaging , 2013, Proceedings of the National Academy of Sciences.

[26]  Szymon Pustelny,et al.  The Global Network of Optical Magnetometers for Exotic physics (GNOME): A novel scheme to search for physics beyond the Standard Model , 2013 .

[27]  P. Larson,et al.  Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate , 2013, Science Translational Medicine.

[28]  D. F. Kimball,et al.  Global Network of Optical Magnetometers for Exotic (GNOME): Physics Novel scheme for exotic physics searches , 2013, 1303.5524.

[29]  J. Blanchard,et al.  High-resolution zero-field NMR J-spectroscopy of aromatic compounds. , 2013, Journal of the American Chemical Society.

[30]  Christoffer Laustsen,et al.  Assessment of early diabetic renal changes with hyperpolarized [1‐13C]pyruvate , 2013, Diabetes/metabolism research and reviews.

[31]  Albert P. Chen,et al.  Hyperpolarized 13C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart , 2012, European journal of heart failure.

[32]  J. Blanchard,et al.  Zero-field NMR enhanced by parahydrogen in reversible exchange. , 2012, Journal of the American Chemical Society.

[33]  J. Blanchard,et al.  Near-zero-field nuclear magnetic resonance. , 2011, Physical review letters.

[34]  D. Budker,et al.  Parahydrogen-enhanced zero-field nuclear magnetic resonance , 2011, 1102.5378.

[35]  John Kurhanewicz,et al.  Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. , 2011, Neoplasia.

[36]  Gregory A Voth,et al.  Infrared Spectrum of the Hydrated Proton in Water. , 2011, The journal of physical chemistry letters.

[37]  P. Seidl,et al.  NMR Spectra of Hydroxylamines, Oximes and Hydroxamic Acids , 2010 .

[38]  G. Radda,et al.  Real‐time assessment of Krebs cycle metabolism using hyperpolarized C magnetic resonance spectroscopy , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[39]  D. Budker,et al.  Optical detection of NMR J-spectra at zero magnetic field. , 2009, Journal of magnetic resonance.

[40]  W. Price,et al.  Spin dynamics: Basics of nuclear magnetic resonance, 2nd edition. , 2009 .

[41]  K. Ivanov,et al.  High resolution NMR study of T1 magnetic relaxation dispersion. I. Theoretical considerations of relaxation of scalar coupled spins at arbitrary magnetic field. , 2008, The Journal of chemical physics.

[42]  A. Grant,et al.  Long-lived states in solution NMR: theoretical examples in three- and four-spin systems. , 2008, Journal of magnetic resonance.

[43]  G. Buntkowsky,et al.  NMR localization of protons in critical enzyme hydrogen bonds. , 2007, Journal of the American Chemical Society.

[44]  Jozef Kowalewski,et al.  Nuclear spin relaxation in liquids : theory, experiments, and applications , 2006 .

[45]  J. Keeler Understanding NMR Spectroscopy , 2005 .

[46]  S. Lloyd,et al.  Lactate isotopomer analysis by 1H NMR spectroscopy: Consideration of long‐range nuclear spin–spin interactions , 2004, Magnetic resonance in medicine.

[47]  P. Barreiro,et al.  Prospects for the rapid detection of mealiness in apples by nondestructive NMR relaxometry , 2002 .

[48]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[49]  J. Eckert,et al.  NMR and INS Line Shapes of Transition Metal Hydrides in the Presence of Coherent and Incoherent Dihydrogen Exchange , 1998 .

[50]  H. Limbach Dynamic NMR Spectroscopy in the Presence of Kinetic Hydrogen/Deuterium Isotope Effects , 1990 .

[51]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[52]  J. Jeener Superoperators in Magnetic Resonance , 1982 .

[53]  J. I. Kaplan,et al.  NMR of Chemically Exchanging Systems , 1980 .

[54]  H. Limbach NMR lineshape theory of superimposed intermolecular spin exchange reactions and its action to the system acetic acid/methanol/tetrahydrofuran-d8 , 1979 .

[55]  R. R. Ernst,et al.  Study of transient chemical reactions by NMR. Fast stopped-flow fourier transform experiments , 1979 .

[56]  R. R. Ernst,et al.  High‐Resolution NMR Study of Relaxation Mechanisms in a Two‐Spin System , 1970 .

[57]  Y. Pocker,et al.  Reversible hydration of pyruvic acid. I. Equilibrium studies , 1969 .

[58]  G. Socrates,et al.  N.m.r. study of the hydration of pyruvic acid , 1967 .

[59]  A. G. Redfield,et al.  The Theory of Relaxation Processes , 1965 .

[60]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[61]  M. Kaplan,et al.  Proton Transfer Studies by Nuclear Magnetic Resonance. III. The Mean Life of the Amine-Water Hydrogen Bond in Aqueous Solution1a , 1960 .

[62]  H. Mcconnell Reaction Rates by Nuclear Magnetic Resonance , 1958 .

[63]  Norman Ramsey,et al.  Magnetic shielding of nuclei in molecules , 1950 .