Caputo derivatives of fractional variable order: Numerical approximations

Abstract We present a new numerical tool to solve partial differential equations involving Caputo derivatives of fractional variable order. Three Caputo-type fractional operators are considered, and for each one of them an approximation formula is obtained in terms of standard (integer-order) derivatives only. Estimations for the error of the approximations are also provided. We then compare the numerical approximation of some test function with its exact fractional derivative. We end with an exemplification of how the presented methods can be used to solve partial fractional differential equations of variable order.

[1]  Agnieszka B. Malinowska,et al.  Variable order fractional variational calculus for double integrals , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[2]  Mehdi Dalir,et al.  Applications of Fractional Calculus , 2010 .

[3]  Carlos F.M. Coimbra,et al.  Mechanics with variable‐order differential operators , 2003 .

[4]  Carlos F.M. Coimbra,et al.  On the variable order dynamics of the nonlinear wake caused by a sedimenting particle , 2011 .

[5]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[6]  Fawang Liu,et al.  Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media , 2014, Comput. Math. Appl..

[7]  Agnieszka B. Malinowska,et al.  Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics , 2012, 1203.1961.

[8]  A. Atangana,et al.  Stability and convergence of the space fractional variable-order Schrödinger equation , 2013 .

[9]  N. Sweilam,et al.  On the Numerical Solutions of the Variable Order Fractional Heat Equation , 2011 .

[10]  R. Herrmann Folded potentials in cluster physics—a comparison of Yukawa and Coulomb potentials with Riesz fractional integrals , 2013, Fractional Calculus.

[11]  Delfim F. M. Torres,et al.  Fractional Variational Calculus of Variable Order , 2011, 1110.4141.

[12]  Maria da Graça Marcos,et al.  Some Applications of Fractional Calculus in Engineering , 2010 .

[13]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[14]  E. Schutter,et al.  Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines , 2006, Neuron.

[15]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[16]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[17]  Shaher Momani,et al.  The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics , 2009, Comput. Math. Appl..

[18]  Duarte Valério,et al.  Variable Order Fractional Controllers , 2013 .

[19]  Agnieszka B. Malinowska,et al.  Noether’s theorem for fractional variational problems of variable order , 2013, 1303.4075.

[20]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[21]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[22]  Sanjay Kumar,et al.  Caputo-Based Fractional Derivative in Fractional Fourier Transform Domain , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[23]  Dominik Sankowski,et al.  Order Functions Selection in the Variable-, Fractional-Order PID Controller , 2014, RRNR.

[24]  Kai Diethelm,et al.  Multi-Term Caputo Fractional Differential Equations , 2010 .

[25]  Delfim F. M. Torres,et al.  Approximation of fractional integrals by means of derivatives , 2012, Comput. Math. Appl..

[26]  Teodor M. Atanackovic,et al.  An expansion formula for fractional derivatives of variable order , 2013 .

[27]  Dov Ingman,et al.  Control of damping oscillations by fractional differential operator with time-dependent order , 2004 .

[28]  Zheng Bin,et al.  (G'/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics , 2012 .

[29]  F. A. Leckie,et al.  Creep problems in structural members , 1969 .

[30]  M. Rapaić,et al.  Variable-Order Fractional Operators for Adaptive Order and Parameter Estimation , 2014, IEEE Transactions on Automatic Control.

[31]  Delfim F. M. Torres,et al.  Numerical approximations of fractional derivatives with applications , 2012, 1208.2588.

[32]  Carlos F.M. Coimbra,et al.  The variable viscoelasticity oscillator , 2005 .

[33]  Igor M. Sokolov,et al.  Fractional diffusion in inhomogeneous media , 2005 .

[34]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[35]  B. Ross,et al.  Integration and differentiation to a variable fractional order , 1993 .

[36]  Carlos E. Mejía,et al.  Generalized time fractional IHCP with Caputo fractional derivatives , 2008 .

[37]  T. Yajima,et al.  Geometry of surfaces with Caputo fractional derivatives and applications to incompressible two-dimensional flows , 2012 .