Reactive Dialectic Search Portfolios for MaxSAT

Metaheuristics have been developed to provide general purpose approaches for solving hard combinatorial problems. While these frameworks often serve as the starting point for the development of problem-specific search procedures, they very rarely work efficiently in their default state. We combine the ideas of reactive search, which adjusts key parameters during search, and algorithm configuration, which fine-tunes algorithm parameters for a given set of problem instances, for the automatic compilation of a portfolio of highly reactive dialectic search heuristics for MaxSAT. Even though the dialectic search metaheuristic knows nothing more about MaxSAT than how to evaluate the cost of a truth assignment, our automatically generated solver defines a new state of the art for random weighted partial MaxSAT instances. Moreover, when combined with an industrial MaxSAT solver, the self-assembled reactive portfolio was able to win four out of nine gold medals at the recent 2016 MaxSAT Evaluation on random, crafted, and industrial partial and weighted-partial MaxSAT instances.

[1]  Sean Safarpour,et al.  Improved Design Debugging Using Maximum Satisfiability , 2007 .

[2]  Yuri Malitsky,et al.  Algorithm Selection and Scheduling , 2011, CP.

[3]  Thomas Stützle,et al.  Automatic (offline) configuration of algorithms , 2014, GECCO.

[4]  Eoin O'Mahony,et al.  Using Case-based Reasoning in an Algorithm Portfolio for Constraint Solving ? , 2008 .

[5]  Thomas Stützle,et al.  F-Race and Iterated F-Race: An Overview , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[6]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[7]  Andrew W. Moore,et al.  Learning Evaluation Functions to Improve Optimization by Local Search , 2001, J. Mach. Learn. Res..

[8]  Bart Selman,et al.  Satisfiability Solvers , 2008, Handbook of Knowledge Representation.

[9]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[10]  Carlos Ansótegui,et al.  Exploiting the Structure of Unsatisfiable Cores in MaxSAT , 2015, IJCAI.

[11]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[12]  Serdar Kadioglu,et al.  Dialectic Search , 2009, CP.

[13]  Yuri Malitsky,et al.  ISAC - Instance-Specific Algorithm Configuration , 2010, ECAI.

[14]  Yuri Malitsky,et al.  Algorithm Portfolios Based on Cost-Sensitive Hierarchical Clustering , 2013, IJCAI.

[15]  Thomas Stützle,et al.  Automatic Component-Wise Design of Multiobjective Evolutionary Algorithms , 2016, IEEE Transactions on Evolutionary Computation.

[16]  Ashiqur R. KhudaBukhsh,et al.  SATenstein: automatically building local search SAT solvers from components , 2009, IJCAI 2009.

[17]  Bernd Bischl,et al.  ASlib: A benchmark library for algorithm selection , 2015, Artif. Intell..

[18]  Jin-Kao Hao,et al.  A “Logic-Constrained” Knapsack Formulation and a Tabu Algorithm for the Daily Photograph Scheduling of an Earth Observation Satellite , 2001, Comput. Optim. Appl..

[19]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[20]  Marius Thomas Lindauer,et al.  The Configurable SAT Solver Challenge (CSSC) , 2015, Artif. Intell..

[21]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[22]  Ivana Kruijff-Korbayová,et al.  A Portfolio Approach to Algorithm Selection , 2003, IJCAI.

[23]  Benjamin Doerr,et al.  Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings , 2015, GECCO.

[24]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[25]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[26]  Yuri Malitsky,et al.  MaxSAT by Improved Instance-Specific Algorithm Configuration , 2014, AAAI.

[27]  Yuri Malitsky,et al.  Model-Based Genetic Algorithms for Algorithm Configuration , 2015, IJCAI.

[28]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[29]  Kevin Leyton-Brown,et al.  Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection , 2010, AAAI.