Parametric t-norms in reconfigurable digital fuzzy systems

The problem of hardware implementation of parametric t-norms in reconfigurable fuzzy systems is discussed. Several parametric families of t-norms suitable for such implementation are considered. FPGA implementation of them is discussed.

[1]  Zvonko G. Vranesic,et al.  Fundamentals of Digital Logic with VHDL Design , 2008 .

[2]  Bernard De Baets,et al.  On the dominance relation between ordinal sums of conjunctors , 2006, Kybernetika.

[3]  S. Neeli,et al.  Fuzzy System with Increased Accuracy Suitable for FPGA implementaion , 2008, 2008 International Conference on Intelligent Engineering Systems.

[4]  菅野 道夫,et al.  Applied fuzzy systems , 1994 .

[5]  Gaspar Mayor,et al.  Additive Generators of Discrete Conjunctive Aggregation Operations , 2007, IEEE Transactions on Fuzzy Systems.

[6]  Laijun Sun,et al.  Research on high-speed fuzzy reasoning with FPGA for fault diagnosis expert system , 2009, 2009 International Conference on Mechatronics and Automation.

[7]  Masaki Togai,et al.  Expert System on a Chip: An Engine for Real-Time Approximate Reasoning , 1986, IEEE Expert.

[8]  Ildar Z. Batyrshin,et al.  FPGA implementation of (p)-monotone sum of basic t-norms , 2010, International Conference on Fuzzy Systems.

[9]  John Yen,et al.  Industrial Applications of Fuzzy Logic and Intelligent Systems , 1995 .

[10]  Ildar Z. Batyrshin,et al.  On Generation of Digital Fuzzy Parametric Conjunctions , 2009, Towards Intelligent Engineering and Information Technology.

[11]  Okyay Kaynak,et al.  Parametric classes of generalized conjunction and disjunction operations for fuzzy modeling , 1999, IEEE Trans. Fuzzy Syst..

[12]  Francisco Herrera,et al.  Increasing fuzzy rules cooperation based on evolutionary adaptive inference systems , 2007, Int. J. Intell. Syst..

[13]  Okyay Kaynak,et al.  Thematic course: Algorithms of Fuzzy Logic. Part I. GENERALIZED CONJUNCTION AND DISJUNCTION OPERATIONS FOR FUZZY CONTROL. , 1999 .

[14]  Andrea Mesiarová-Zemánková,et al.  Continuous triangular subnorms , 2004, Fuzzy Sets Syst..

[15]  Andres Upegui,et al.  A Dynamically-Reconfigurable FPGA Platform for Evolving Fuzzy Systems , 2005, IWANN.

[16]  Josep Puyol-Gruart,et al.  Handling Fuzzy Information in MILORD II , 1998 .

[17]  Steve Kilts Advanced FPGA design , 2007 .

[18]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[19]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[20]  Lluis Godo,et al.  MILORD: The architecture and the management of linguistically expressed uncertainty , 1989, Int. J. Intell. Syst..

[21]  Sándor Jenei,et al.  How to construct left-continuous triangular norms--state of the art , 2004, Fuzzy Sets Syst..

[22]  Samir Palnitkar,et al.  Verilog HDL: a guide to digital design and synthesis , 1996 .

[23]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[24]  Steve Kilts Control System Components , 2008 .

[25]  Iluminada Baturone,et al.  FPGA Implementation of Embedded Fuzzy Controllers for Robotic Applications , 2007, IEEE Transactions on Industrial Electronics.

[26]  P.D. Koprinkova-Hristova,et al.  Fuzzy operations' parameters versus membership functions' parameters influence on fuzzy control systems properties , 2004, 2004 2nd International IEEE Conference on 'Intelligent Systems'. Proceedings (IEEE Cat. No.04EX791).

[27]  Bogdan M. Wilamowski,et al.  Implementing a fuzzy system on a field programmable gate array , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[28]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.