Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition

Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.

[1]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[2]  Stephen M. Watt,et al.  Intelligent Computer Mathematics , 2014, Lecture Notes in Computer Science.

[3]  Matthew England,et al.  A "Piano Movers" Problem Reformulated , 2013, 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[4]  Bernhard Schölkopf,et al.  Kernel Methods in Computational Biology , 2005 .

[5]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[6]  James H. Davenport,et al.  A repository for CAD examples , 2013, ACCA.

[7]  D Aspinall,et al.  Optimising Problem Formulation for Cylindrical Algebraic Decomposition , 2013 .

[8]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[9]  Matthew England An implementation of CAD in Maple utilising problem formulation, equational constraints and truth-table invariance , 2013, ArXiv.

[10]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[11]  Adam W. Strzebonski,et al.  Solving polynomial systems over semialgebraic sets represented by cylindrical algebraic formulas , 2012, ISSAC.

[12]  James P. Bridge Machine learning and automated theorem proving , 2010 .

[13]  Pierre Baldi,et al.  Assessing the accuracy of prediction algorithms for classification: an overview , 2000, Bioinform..

[14]  Thomas Sturm,et al.  Real Quantifier Elimination in Practice , 1997, Algorithmic Algebra and Number Theory.

[15]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[16]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[17]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition , 1985, European Conference on Computer Algebra.

[18]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[19]  Matthew England,et al.  Program Verification in the Presence of Complex Numbers, Functions with Branch Cuts etc , 2012, 2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[20]  Christopher W. Brown,et al.  Algorithmic methods for investigating equilibria in epidemic modeling , 2006, J. Symb. Comput..

[21]  Thorsten Joachims,et al.  Making large-scale support vector machine learning practical , 1999 .

[22]  A Pettorossi Automata theory and formal languages , 2008 .

[23]  Matthew England,et al.  Cylindrical algebraic decompositions for boolean combinations , 2013, ISSAC '13.

[24]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[25]  Roy Rada,et al.  Machine learning - applications in expert systems and information retrieval , 1986, Ellis Horwood series in artificial intelligence.

[26]  Adam W. Strzebonski,et al.  Cylindrical Algebraic Decomposition using validated numerics , 2006, J. Symb. Comput..

[27]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[28]  James H. Davenport,et al.  The complexity of quantifier elimination and cylindrical algebraic decomposition , 2007, ISSAC '07.

[29]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[30]  Dayne Freitag,et al.  A Machine Learning Architecture for Optimizing Web Search Engines , 1999 .

[31]  Lawrence C. Paulson,et al.  MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions , 2010, Journal of Automated Reasoning.

[32]  Scott McCallum,et al.  On projection in CAD-based quantifier elimination with equational constraint , 1999, ISSAC '99.

[33]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[34]  Jacques Carette,et al.  Understanding expression simplification , 2004, ISSAC '04.

[35]  Andreas Seidl,et al.  Efficient projection orders for CAD , 2004, ISSAC '04.

[36]  Saugata Basu,et al.  Algorithms in Real Algebraic Geometry: A Survey , 2014, ArXiv.

[37]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[38]  Hirokazu Anai,et al.  An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination , 2009, SNC '09.

[39]  Leonardo Mendonça de Moura,et al.  Solving non-linear arithmetic , 2012, ACCA.

[40]  M. Morari,et al.  Nonlinear parametric optimization using cylindrical algebraic decomposition , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[41]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[42]  Manuela M. Veloso,et al.  Multiagent Systems: A Survey from a Machine Learning Perspective , 2000, Auton. Robots.

[43]  G. E. Collins,et al.  Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress , 1998 .

[44]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[45]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[46]  James P. Bridge,et al.  Machine Learning for First-Order Theorem Proving , 2014, J. Autom. Reason..

[47]  H. Hong An improvement of the projection operator in cylindrical algebraic decomposition , 1990, ISSAC '90.

[48]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[49]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[50]  Christopher W. Brown Improved Projection for Cylindrical Algebraic Decomposition , 2001, J. Symb. Comput..

[51]  Thorsten Joachims,et al.  A support vector method for multivariate performance measures , 2005, ICML.