Compact simulation guides subnanometer, femtosecond measures of energy transfer between quasiparticles and hot carriers at interfaces between metals and two-dimensional materials

Compact computational structure-function relations are needed to examine energy transfer between confined fields and carrier dynamics at heterostructure interfaces. This work used discrete dipole approximations to analyze quasiparticle excitation and dephasing at interfaces between metals and van der Waals materials. Simulations were compared with scanning transmission electron microscopy (STEM) for energy electron loss spectroscopy (EELS) at sub-nanometer resolution and femtosecond timescale. Artifacts like direct electron-hole pair generation were avoided. Comparing simulation with experiment distinguished quasiparticle energy transfer to hot carriers at the interface, and supported development of structure-function relations between interface morphology and emergent discrete and hybrid modes.

[1]  Zhe Zhang,et al.  A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering. , 2011, Chemical communications.

[2]  Xiaodong Xu,et al.  Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors. , 2011, Nano letters.

[3]  James W. M. Chon,et al.  Nanoplasmonics : Advanced Device Applications , 2013 .

[4]  Aaron M. Jones,et al.  Ultrafast hot-carrier-dominated photocurrent in graphene. , 2012, Nature nanotechnology.

[5]  P. Ajayan,et al.  Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. , 2013, ACS nano.

[6]  D. DeJarnette,et al.  Coupled dipole plasmonics of nanoantennas in discontinuous, complex dielectric environments , 2015 .

[7]  Joel K. W. Yang,et al.  Surface Plasmon Damping Quantified with an Electron Nanoprobe , 2013, Scientific Reports.

[8]  P. Dobson,et al.  Optical spectroscopy and energy-filtered transmission electron microscopy of surface plasmons in core-shell nanoparticles , 2007 .

[9]  P. Lambin,et al.  Calculation of the energy loss for an electron passing near giant fullerenes , 1996 .

[10]  D. Roper,et al.  Spectral Characteristics of Noble Metal Nanoparticle–Molybdenum Disulfide Heterostructures , 2016 .

[11]  L. Brus Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. , 2008, Accounts of chemical research.

[12]  S. Romani,et al.  Liquid injection atomic layer deposition of silver nanoparticles , 2010, Nanotechnology.

[13]  Alfons G. Hoekstra,et al.  The discrete dipole approximation: an overview and recent developments , 2007 .

[14]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[15]  J. Hafner,et al.  Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer , 2011, Theranostics.

[16]  J. Camden,et al.  Spatial, Spectral, and Coherence Mapping of Single-Molecule SERS Active Hot Spots via the Discrete-Dipole Approximation , 2011 .

[17]  P. Van Dorpe,et al.  Ultralocal modification of surface plasmons properties in silver nanocubes. , 2012, Nano letters.

[18]  Thomas Wriedt,et al.  Comparison of computational scattering methods , 1998 .

[19]  M. Benamara,et al.  Electron Energy Loss Spectroscopy of Hot Electron Transport between Gold Nanoantennas and Molybdenum Disulfide by Plasmon Excitation , 2017 .

[20]  D. DeJarnette,et al.  Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices. , 2014, Optics express.

[21]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[22]  A. Hohenau,et al.  Dark Plasmonic Breathing Modes in Silver Nanodisks , 2012, Nano letters.

[23]  A. N. Grigorenko,et al.  Ju l 2 01 1 Strong Plasmonic Enhancement of Photovoltage in Graphene , 2011 .

[24]  Drew DeJarnette,et al.  Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices , 2014 .

[25]  Jaime Gómez Rivas,et al.  Universal scaling of the figure of merit of plasmonic sensors. , 2011, ACS nano.

[26]  V. Ryzhii,et al.  Damping mechanism of terahertz plasmons in graphene on heavily doped substrate , 2014 .

[27]  Hyungtak Seo,et al.  Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. , 2011, Nano letters.

[28]  X. Ling,et al.  First-layer effect in graphene-enhanced Raman scattering. , 2010, Small.

[29]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[30]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[31]  X. Duan,et al.  Plasmon resonance enhanced multicolour photodetection by graphene. , 2011, Nature communications.

[32]  Drew DeJarnette,et al.  Electron energy loss spectroscopy of gold nanoparticles on graphene , 2014 .

[33]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[34]  A. Agarwal,et al.  Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods , 2009 .

[35]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[36]  Lei Shi,et al.  Enhanced light-matter interactions in graphene-covered gold nanovoid arrays. , 2013, Nano letters.

[37]  Drew DeJarnette,et al.  Selective spectral filtration with nanoparticles for concentrating solar collectors , 2015 .

[38]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[39]  Stefan Linden,et al.  Spectral imaging of individual split-ring resonators. , 2010, Physical review letters.

[40]  A. Demming,et al.  Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering. , 2005, The Journal of chemical physics.

[41]  Harald Ditlbacher,et al.  Electron-energy-loss spectra of plasmonic nanoparticles. , 2009, Physical review letters.

[42]  Robert A. Taylor,et al.  Feasibility of nanofluid-based optical filters. , 2013, Applied optics.

[43]  W. Sigle,et al.  EFTEM study of surface plasmon resonances in silver nanoholes , 2010 .

[44]  Thomas Wriedt,et al.  A Review of Elastic Light Scattering Theories , 1998 .

[45]  B. Draine,et al.  Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. , 2012, Optics express.

[46]  Baptiste Auguié,et al.  Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells. , 2013, Physical chemistry chemical physics : PCCP.

[47]  M. Benamara,et al.  Electron Energy Loss Spectroscopy of Surface Plasmon Resonances on Aberrant Gold Nanostructures , 2016 .

[48]  C. Afonso,et al.  Sculpting nanometer-sized light landscape with plasmonic nanocolumns. , 2009, The Journal of chemical physics.

[49]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[50]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[51]  J. Camden,et al.  Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods. , 2012, ACS nano.