Blind parametric identification of non-Gaussian FIR systems using higher order cumulants

Two approaches are introduced for the identification of linear time-invariant systems when only output data are available. The input sequences are independent and must be non-Gaussian. To estimate the parameters of the system, we use only the fourth-order cumulants of the output, which may be contaminated by an additive, zero mean, Gaussian noise of unknown variance. To measure the performance of the proposed algorithms against existing methods, we compared them with the Zhang's algorithm. Simulations verify an apparent performance of the second algorithm, compared with the first and Zhang's algorithms, in a low signal-to-noise ratio and for small data. The simulation results show that the first algorithm has the same performance compared with Zhang's one. But the second algorithm achieves better performance compared with the first and Zhang is algorithm. For validation purposes, the second algorithm is used to search for a model able to describe and simulate the data set representing the wind speed.

[1]  Xianda Zhang,et al.  Singular value decomposition-based MA order determination of non-Gaussian ARMA models , 1993, IEEE Trans. Signal Process..

[2]  Jitendra K. Tugnait,et al.  Approaches of FIR system identification with noisy data using higher order statistics , 1990, IEEE Trans. Acoust. Speech Signal Process..

[3]  E. Muljadi,et al.  Control strategy for variable-speed, stall-regulated wind turbines , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[4]  Tommy W. S. Chow,et al.  Semiblind identification of nonminimum-phase ARMA models via order recursion with higher order cumulants , 1998, IEEE Trans. Ind. Electron..

[5]  G.B. Giannakis,et al.  Cumulant-based order determination of non-Gaussian ARMA models , 1990, IEEE Trans. Acoust. Speech Signal Process..

[6]  Chrysostomos L. Nikias,et al.  The complex cepstrum of higher order cumulants and nonminimum phase system identification , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  ANANTHRAM SWAMI,et al.  Closed-form recursive estimation of MA coefficients using autocorrelations and third-order cumulants , 1989, IEEE Trans. Acoust. Speech Signal Process..

[8]  Jerry M. Mendel,et al.  ARMA parameter estimation using only output cumulants , 1990, IEEE Trans. Acoust. Speech Signal Process..

[9]  Jitendra K. Tugnait,et al.  Identification of linear stochastic systems via second- and fourth-order cumulant matching , 1987, IEEE Trans. Inf. Theory.

[10]  Yoshiaki Tadokoro,et al.  Overdetermined C(q,k) formula using third and fourth order cumulants , 1996 .

[11]  Xianda Zhang,et al.  Adaptive identification of nonminimum phase ARMA models using higher order cumulants alone , 1996, IEEE Trans. Signal Process..

[12]  A. Venetsanopoulos,et al.  Cumulant-based parametric multichannel FIR system identification methods , 1993, [1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics.

[13]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[14]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  Diego P. Ruiz,et al.  FIR system identification using third- and fourth-order cumulants , 1995 .

[16]  J. Lacoume,et al.  Statistiques d'ordre supérieur pour le traitement du signal , 1997 .

[17]  Kwang Soon Kim,et al.  Identification of nonminimum phase FIR: systems using the third and fourth-order cumulants , 1995, IEEE Trans. Signal Process..

[18]  Chrysostomos L. Nikias,et al.  ARMA bispectrum approach to nonminimum phase system identification , 1988, IEEE Trans. Acoust. Speech Signal Process..

[19]  K. V. S. Hari,et al.  FIR system identification using higher order cumulants-a generalized approach , 1995, IEEE Trans. Signal Process..

[20]  Xianda Zhang,et al.  FIR system identification using higher order statistics alone , 1994, IEEE Trans. Signal Process..

[21]  D. Aboutajdine,et al.  2 - Identification des signaux à moyenne ajustée non gaussiens à l'aide de cumulants , 1999 .

[22]  Steve McLaughlin,et al.  MA parameter estimation and cumulant enhancement , 1996, IEEE Trans. Signal Process..

[23]  Zhenya He,et al.  Criteria and algorithms for blind source separation based on cumulants , 1996 .

[24]  Jitendra K. Tugnait,et al.  Identification of non-minimum phase linear stochastic systems , 1986, Autom..

[25]  Jitendra K. Tugnait,et al.  New results on FIR system identification using higher-order statistics , 1990, Fifth ASSP Workshop on Spectrum Estimation and Modeling.

[26]  G. Giannakis Cumulants: A powerful tool in signal processing , 1987, Proceedings of the IEEE.

[27]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .