Sparse Sums of Positive Semidefinite Matrices

Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic formulation in terms of approximating sums of rank-one matrices. This article considers a more general task of approximating sums of symmetric, positive semidefinite matrices of arbitrary rank. We present two deterministic, polynomial time algorithms for solving this problem. The first algorithm applies the pessimistic estimators of Wigderson and Xiao, and the second involves an extension of the method of Batson, Spielman, and Srivastava. These algorithms have several applications, including sparsifiers of hypergraphs, sparse solutions to semidefinite programs, sparsifiers of unique games, and graph sparsifiers with various auxiliary constraints.

[1]  Jonathan A. Kelner,et al.  Spectral Sparsification in the Semi-streaming Setting , 2012, Theory of Computing Systems.

[2]  Gideon Schechtman Tight embedding of subspaces of $L_p$ in $\ell_p^n$ for even $p$ , 2010 .

[3]  Shang-Hua Teng,et al.  Spectral sparsification of graphs: theory and algorithms , 2013, CACM.

[4]  Sudipto Guha,et al.  Approximating a finite metric by a small number of tree metrics , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[5]  Gary L. Miller,et al.  Approaching optimality for solving SDD systems , 2010, ArXiv.

[6]  Levent Tunçel,et al.  Optimization Problems over Unit-Distance Representations of Graphs , 2010, Electron. J. Comb..

[7]  N. Srivastava On Contact Points of Convex Bodies , 2012 .

[8]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[9]  Alexander Schrijver,et al.  A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.

[10]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[11]  R. McEliece,et al.  The Lovasz bound and some generalizations , 1978 .

[12]  Gary L. Miller,et al.  Approaching Optimality for Solving SDD Linear Systems , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[13]  Avi Wigderson,et al.  Derandomizing the Ahlswede-Winter matrix-valued Chernoff bound using pessimistic estimators, and applications , 2008, Theory Comput..

[14]  G. Schechtman Tight embedding of subspaces of "L"p in "l n,p" for even "p" , 2011 .

[15]  Nisheeth K. Vishnoi,et al.  Towards an SDP-based approach to spectral methods: a nearly-linear-time algorithm for graph partitioning and decomposition , 2010, SODA '11.

[16]  David R. Karger,et al.  Randomized Approximation Schemes for Cuts and Flows in Capacitated Graphs , 2002, SIAM J. Comput..

[17]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[18]  Marcel K. De,et al.  MIN-MAX THEOREMS RELATED TO GEOMETRIC REPRESENTATIONS OF GRAPHS AND THEIR SDPS , 2011 .

[19]  Debmalya Panigrahi,et al.  A Linear-time Algorithm for Sparsification of Unweighted Graphs , 2010, ArXiv.

[20]  Richard Peng,et al.  Improved Spectral Sparsification and Numerical Algorithms for SDD Matrices , 2012, STACS.

[21]  Nicholas J. A. Harvey,et al.  Graph Sparsification by Edge-Connectivity and Random Spanning Trees , 2010, ArXiv.

[22]  Richard J. Lipton,et al.  Simple strategies for large zero-sum games with applications to complexity theory , 1994, STOC '94.

[23]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[24]  H. Lefmann,et al.  Computing sparse approximations deterministically , 1996 .

[25]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[26]  Nikhil Srivastava,et al.  Twice-ramanujan sparsifiers , 2008, STOC '09.

[27]  Y. Freund,et al.  Adaptive game playing using multiplicative weights , 1999 .

[28]  Pierre Youssef Estimating the covariance of random matrices , 2013 .

[29]  Clifford Stein,et al.  Approximating Semidefinite Packing Programs , 2011, SIAM J. Optim..

[30]  Neal E. Young,et al.  Randomized rounding without solving the linear program , 1995, SODA '95.

[31]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[32]  Anthony Man-Cho So,et al.  A Unified Theorem on Sdp Rank Reduction , 2008, Math. Oper. Res..

[33]  Christos Boutsidis,et al.  Near Optimal Column-Based Matrix Reconstruction , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[34]  Anastasios Zouzias,et al.  A Matrix Hyperbolic Cosine Algorithm and Applications , 2011, ICALP.

[35]  I. Althöfer On sparse approximations to randomized strategies and convex combinations , 1994 .

[36]  Satyen Kale Efficient algorithms using the multiplicative weights update method , 2007 .

[37]  J. Tropp User-Friendly Tools for Random Matrices: An Introduction , 2012 .

[38]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[39]  Ashish Goel,et al.  Graph Sparsification via Refinement Sampling , 2010, ArXiv.

[40]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[41]  J. Rodri´guez On the Laplacian Eigenvalues and Metric Parameters of Hypergraphs , 2002 .

[42]  Sanjeev Arora,et al.  A combinatorial, primal-dual approach to semidefinite programs , 2007, STOC '07.

[43]  Ilan Newman,et al.  Finite Volume Spaces and Sparsification , 2010, 1002.3541.

[44]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[45]  Clifford Stein,et al.  Approximation Algorithms for Semidefinite Packing Problems with Applications to Maxcut and Graph Coloring , 2005, IPCO.

[46]  N. Young Greedy Algorithms by Derandomizing Unknown Distributions , 1994 .

[47]  Rahul Jain,et al.  A Parallel Approximation Algorithm for Positive Semidefinite Programming , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[48]  László Lovász,et al.  Semidefinite Programs and Combinatorial Optimization , 2003 .

[49]  D. Spielman,et al.  An elementary proof of the restricted invertibility theorem , 2009, 0911.1114.

[50]  Debmalya Panigrahi,et al.  A general framework for graph sparsification , 2010, STOC '11.

[51]  A. Naor Sparse quadratic forms and their geometric applications (after Batson, Spielman and Srivastava) , 2011, 1101.4324.