High-girth near-Ramanujan graphs with localized eigenvectors

We show that for every prime $d$ and $\alpha\in (0,1/6)$, there is an infinite sequence of $(d+1)$-regular graphs $G=(V,E)$ with girth at least $2\alpha \log_{d}(|V|)(1-o_d(1))$, second adjacency matrix eigenvalue bounded by $(3/\sqrt{2})\sqrt{d}$, and many eigenvectors fully localized on small sets of size $O(|V|^\alpha)$. This strengthens the results of Ganguly-Srivastava, who constructed high girth (but not expanding) graphs with similar properties, and may be viewed as a discrete analogue of the "scarring" phenomenon observed in the study of quantum ergodicity on manifolds. Key ingredients in the proof are a technique of Kahale for bounding the growth rate of eigenfunctions of graphs, discovered in the context of vertex expansion and a method of Erdős and Sachs for constructing high girth regular graphs.

[1]  A. Nilli On the second eigenvalue of a graph , 1991 .

[2]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[3]  Y. C. Verdière,et al.  Ergodicité et fonctions propres du laplacien , 1985 .

[4]  NALINI ANANTHARAMAN,et al.  DELOCALIZATION OF SCHRÖDINGER EIGENFUNCTIONS , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[5]  M. Murty Ramanujan Graphs , 1965 .

[6]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[7]  Nalini Anantharaman,et al.  Quantum ergodicity on large regular graphs , 2013, 1304.4343.

[8]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[9]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[10]  Peter Sarnak,et al.  Recent progress on the quantum unique ergodicity conjecture , 2011 .

[11]  Steve Zelditch,et al.  Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .

[12]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[13]  Noga Alon,et al.  Permutations Resilient to Deletions , 2018, Annals of Combinatorics.

[14]  Nikhil Srivastava,et al.  On Non-localization of Eigenvectors of High Girth Graphs , 2018, International Mathematics Research Notices.

[15]  Tuomas Sahlsten,et al.  Quantum ergodicity and Benjamini–Schramm convergence of hyperbolic surfaces , 2016, 1605.05720.

[16]  Horng-Tzer Yau,et al.  Local Kesten–McKay Law for Random Regular Graphs , 2016, Communications in Mathematical Physics.

[17]  Elon Lindenstrauss,et al.  Non-localization of eigenfunctions on large regular graphs , 2009, 0912.3239.

[18]  Andrew Hassell,et al.  Ergodic billiards that are not quantum unique ergodic , 2008, 0807.0666.

[19]  Nabil Kahale,et al.  On the second eigenvalue and linear expansion of regular graphs , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[20]  Nabil Kahale,et al.  Eigenvalues and expansion of regular graphs , 1995, JACM.

[21]  Elon Lindenstrauss,et al.  Quantum Ergodicity and Averaging Operators on the Sphere , 2015, 1505.03887.