Long-period seismology on Europa: 2. Predicted seismic response

[1] Previous studies have documented the potential for using relatively short-period body waves and intermediate-period surface waves to explore the structure and tectonics of Europa. We show that long-period measurements (0.001 to 0.1 Hz) may have large amplitudes of displacement (millimeters to centimeters) and are potentially measurable from orbit without requiring a lander. To accurately model the long-period response of Europa, we use normal modes calculated from physically self-consistent models of Europa's structure developed in part 1 (Cammarano et al., 2007). On the basis of the geometry of observed faults, we estimate that faulting events of magnitude 5 or larger may occur regularly. Synthetic seismograms show that long-period displacement measurements with millimeter accuracy could detect current tectonic activity and determine the thickness of Europa's ice shell, and confirm the presence of a subsurface ocean. Determination of deeper structure with seismic measurements, however, is more challenging in the presence of a global liquid ocean, which acts to decouple deeper seismic energy from the surface.

[1]  B. Romanowicz,et al.  Long‐period seismology on Europa: 1. Physically consistent interior models , 2006 .

[2]  Nicholas C. Makris,et al.  Mechanics of tidally driven fractures in Europa's ice shell , 2005 .

[3]  J. Ruiz The heat flow of Europa , 2005 .

[4]  S. Kattenhorn,et al.  The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges , 2005 .

[5]  F. Nimmo,et al.  Normal faulting on Europa: implications for ice shell properties , 2005 .

[6]  Janusz Eluszkiewicz,et al.  Dim prospects for radar detection of Europa's ocean , 2004 .

[7]  R. Pappalardo,et al.  On the origins of band topography, Europa , 2003 .

[8]  A. Deschamps,et al.  Measuring surface wave phase velocities beneath small broad-band arrays: tests of an improved algorithm and application to the French Alps , 2003 .

[9]  Nicholas C. Makris,et al.  Probing Europa's interior with natural sound sources , 2003 .

[10]  A. Paul,et al.  Long-Range Correlations in the Diffuse Seismic Coda , 2003, Science.

[11]  B. R. Tufts,et al.  Polar Wander and Surface Convergence of Europa's Ice Shell: Evidence from a Survey of Strike-Slip Displacement , 2002 .

[12]  Robert L. Kovach,et al.  Seismic Detectability of a Subsurface Ocean on Europa , 2001 .

[13]  L. Rivera,et al.  The NetLander very broad band seismometer , 2000 .

[14]  B. R. Tufts,et al.  Distribution of strike‐slip faults on Europa , 2000 .

[15]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[16]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[17]  B. R. Tufts,et al.  Formation of cycloidal features on Europa. , 1999, Science.

[18]  Robert T. Pappalardo,et al.  Tectonic Processes on Europa: Tidal Stresses, Mechanical Response, and Visible Features , 1998 .

[19]  B. Romanowicz,et al.  The seismic OPTIMISM experiment , 1998 .

[20]  J. Burns,et al.  Evidence for non-synchronous rotation of Europa , 1998, Nature.

[21]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.

[22]  Barbara Romanowicz,et al.  Toward real-time estimation of regional moment tensors , 1996, Bulletin of the Seismological Society of America.

[23]  W. McKinnon,et al.  Is There Evidence for Polar Wander on Europa , 1996 .

[24]  K. Aki,et al.  Scattering wave energy propagation in a random isotropic scattering medium: 1. Theory , 1991 .

[25]  N. Goulty,et al.  The influence of tidal stresses on deep moonquake activity. , 1988 .

[26]  A. McEwen Tidal reorientation and the fracturing of Jupiter's moon Europa , 1986, Nature.

[27]  K. Aki,et al.  Elastic wave scattering by a random medium and the small‐scale inhomogeneities in the lithosphere , 1985 .

[28]  Ru-Shan Wu,et al.  Multiple scattering and energy transfer of seismic waves - separation of scattering effect from intrinsic attenuation - I. Theoretical modelling , 1985 .

[29]  P. Schenk,et al.  Fault offsets and lateral crustal movement on Europa - Evidence for a mobile ice shell , 1985 .

[30]  A. Dziewoński,et al.  Seismic Surface Waves and Free Oscillations in a Regionalized Earth Model , 1982 .

[31]  David R. Lammlein,et al.  Lunar seismicity and tectonics , 1977 .

[32]  K. Anderson,et al.  Seismic scattering and shallow structure of the moon in oceanus procellarum , 1974 .

[33]  Robert A. Phinney,et al.  Representation of the Elastic ‐ Gravitational Excitation of a Spherical Earth Model by Generalized Spherical Harmonics , 1973 .

[34]  A. Dziewoński,et al.  A technique for the analysis of transient seismic signals , 1969 .

[35]  W. Prothero,et al.  The superconducting gravimeter , 1968 .

[36]  F. Press,et al.  Propagation of elastic waves in a floating ice sheet , 1951 .

[37]  S. Gorevan,et al.  PROBING EUROPA ’ S INTERIOR WITH NATURAL SOUND SOURCES , 2003 .

[38]  K. Aki,et al.  Quantitative Seismology, 2nd Ed. , 2002 .

[39]  M. Kivelson,et al.  Measurements: A Stronger Case for a Subsurface Ocean at Europa , 2000 .

[40]  R. A. Jacobson,et al.  Europa's differentiated internal structure: inferences from four Galileo encounters. , 1997, Science.

[41]  B. Mosser,et al.  Planetary seismology , 1993 .

[42]  Yosio Nakamura,et al.  A1 moonquakes - Source distribution and mechanism , 1978 .

[43]  Y. Nakamura A 1 moonquakes: Source distribution b and mechanism. , 1978 .

[44]  A. P. Crary A brief study of ice tremors , 1955 .