Numerical performance of preconditioning techniques for the solution of complex sparse linear systems

Preconditioning techniques based on ILU decomposition, on Frobenius norm minimization and on factorized sparse approximate inverse are considered. These algorithms are applied with conjugate gradient-type methods, namely Bi-CGSTAB, QMR and TFQMR for the solution of complex, large, sparse linear systems. The results of numerical experiments in scalar environment with matrices arising from transport in porous media, quantum chemistry, structural dynamics and electromagnetism are analysed. The preconditioner that appears most significant in parallel environment (based on factorized sparse approximate inverse) is then employed on a Cray T3E supercomputer. The experimental results show the satisfactory parallel performance of the proposed algorithm. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  G. Gambolati,et al.  Complex Solution to Nonideal Contaminant Transport Through Porous Media , 1998 .

[2]  Guillaume Alléon,et al.  Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics , 1997, Numerical Algorithms.

[3]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[4]  M. Benzi,et al.  A comparative study of sparse approximate inverse preconditioners , 1999 .

[5]  Roland W. Freund,et al.  An Implementation of the QMR Method Based on Coupled Two-Term Recurrences , 1994, SIAM J. Sci. Comput..

[6]  M. Benson,et al.  Parallel algorithms for the solution of certain large sparse linear systems , 1984 .

[7]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[8]  S. Chu Complex quasivibrational energy formalism for intense‐field multiphoton and above‐threshold dissociation: Complex‐scaling Fourier‐grid Hamiltonian method , 1991 .

[9]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[10]  Alex Pothen,et al.  A Scalable Parallel Algorithm for Incomplete Factor Preconditioning , 2000, SIAM J. Sci. Comput..

[11]  Giorgio Pini,et al.  PARALLEL FINITE ELEMENT LAPLACE TRANSFORM METHOD FOR THE NON-EQUILIBRIUM GROUNDWATER TRANSPORT EQUATION , 1997 .

[12]  Henk A. van der Vorst,et al.  Parallel incomplete factorizations with pseudo-overlapped subdomains , 2001, Parallel Comput..

[13]  V. Simoncini,et al.  Iterative system solvers for the frequency analysis of linear mechanical systems , 2000 .

[14]  Bruno Carpentieri,et al.  Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism , 2000 .

[15]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[16]  D. Kershaw The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .

[17]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[18]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[19]  A Block Iterative Finite Element Model for Nonlinear Leaky Aquifer Systems , 1996 .

[20]  Michele Benzi,et al.  Numerical experiments with two approximate inverse preconditioners , 1998 .

[21]  Edmond Chow,et al.  A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[22]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..