Structural Rules and a Logical Hierarchy

Gentzen-type sequent calculi usually contain three structural rules, i.e., exchange, contraction and weakening rules. In recent years, however, there have been various studies on logics that have not included some or any of these structural rules. The motives or purposes of these studies have been so diverse that sometimes close connections between them have been overlooked. Here we will make a brief survey of recent results on these logics in an attempt to make these interrelationships clearer.

[1]  R. L. Goodstein,et al.  Provability in logic , 1959 .

[2]  Wojciech Buszkowski Completeness Results for Lambek Syntactic Calculus , 1986, Math. Log. Q..

[3]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[4]  V. Michele Abrusci Sequent Calculus for Intuitionistic Linear Propositional Logic , 1990 .

[5]  G. Mints,et al.  Closed categories and the theory of proofs , 1981 .

[6]  Peter Hilton,et al.  Category Theory, Homology Theory and their Applications II , 1969 .

[7]  Jean-Yves Girard,et al.  Linear Logic and Lazy Computation , 1987, TAPSOFT, Vol.2.

[8]  Richard W. Weyhrauch,et al.  A Decidable Fragment of Predicate Calculus , 1984, Theor. Comput. Sci..

[9]  Marisa Venturini Zilli Mathematical Models for the Semantics of Parallelism , 1987, Lecture Notes in Computer Science.

[10]  Joachim Lambek,et al.  Deductive systems and categories III. Cartesian closed categories, intuitionist propositional calculus, and combinatory logic , 1972 .

[11]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[12]  R. A. Bull Survey of generalizations of Urquhart semantics , 1987, Notre Dame J. Formal Log..

[13]  Jean-Yves Girard Linear Logic and Parallelism , 1986, Mathematical Models for the Semantics of Parallelism.

[14]  Yves Lafont The Linear Abstract Machine (Corrigenda) , 1988, Theor. Comput. Sci..

[15]  J. Benthem Essays in Logical Semantics , 1986 .

[16]  J. Benthem Categorial Grammar and Lambda Calculus , 1987 .

[17]  Hiroakira Ono,et al.  Logics without the contraction rule , 1985, Journal of Symbolic Logic.

[18]  S. Jaśkowski Über Tautologien, in Welchen Keine Variable Mehr Als Zweimal Vorkommt , 1963 .

[19]  Hiroakira Ono Semantical analysis of predicate logics without the contraction rule , 1985, Stud Logica.

[20]  J. Lambek Deductive systems and categories II. Standard constructions and closed categories , 1969 .

[21]  Hao Wang,et al.  A survey of mathematical logic , 1963 .

[22]  Yuichi Komori Predicate logics without the structure rules , 1986, Stud Logica.

[23]  V. N. Grisin PREDICATE AND SET-THEORETIC CALCULI BASED ON LOGIC WITHOUT CONTRACTIONS , 1982 .

[24]  J. Roger Hindley,et al.  Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.

[25]  M. E. Szabo Algebra of proofs , 1978 .