A method for solving bilevel linear programming problems

This paper presents an approach for solving bilevel linear programming problems (BLPP). It is based on the result that an optimal solution to the BLPP is reachable at an extreme point of the underlying region. Consequently, we develop a pivot technique to find the global optimal solution on an expanded tableau that represents the data of the BLPP. The pivot technique allows to rank in increasing order the outer level objective function value until

[1]  Heinrich von Stackelberg,et al.  Stackelberg (Heinrich von) - The Theory of the Market Economy, translated from the German and with an introduction by Alan T. PEACOCK. , 1953 .

[2]  L. Goddard,et al.  Operations Research (OR) , 2007 .

[3]  James E. Falk,et al.  A linear max—min problem , 1973, Math. Program..

[4]  José Fortuny-Amat,et al.  A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .

[5]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..

[6]  Wilfred Candler,et al.  A linear two-level programming problem, , 1982, Comput. Oper. Res..

[7]  Wayne F. Bialas,et al.  On two-level optimization , 1982 .

[8]  Jonathan F. Bard An Algorithm for Solving the General Bilevel Programming Problem , 1983, Math. Oper. Res..

[9]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[10]  Patrice Marcotte,et al.  Network design problem with congestion effects: A case of bilevel programming , 1983, Math. Program..

[11]  S. Dempe A simple algorithm for the-linear bilevel programming problem , 1987 .

[12]  J. Pang,et al.  Existence of optimal solutions to mathematical programs with equilibrium constraints , 1988 .

[13]  A. Westerberg,et al.  A note on the optimality conditions for the bilevel programming problem , 1988 .

[14]  Arthur W. Westerberg,et al.  Bilevel programming for steady-state chemical process design—I. Fundamentals and algorithms , 1990 .

[15]  D. White,et al.  A solution method for the linear static Stackelberg problem using penalty functions , 1990 .

[16]  Charles E. Blair,et al.  Computational Difficulties of Bilevel Linear Programming , 1990, Oper. Res..

[17]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[18]  J. Bard Some properties of the bilevel programming problem , 1991 .

[19]  Joaquim Júdice,et al.  A sequential LCP method for bilevel linear programming , 1992, Ann. Oper. Res..

[20]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[21]  M. Florian,et al.  THE NONLINEAR BILEVEL PROGRAMMING PROBLEM: FORMULATIONS, REGULARITY AND OPTIMALITY CONDITIONS , 1993 .

[22]  Peter Värbrand,et al.  A global optimization approach for the linear two-level program , 1993, J. Glob. Optim..

[23]  G. Anandalingam,et al.  A penalty function approach for solving bi-level linear programs , 1993, J. Glob. Optim..

[24]  Hayri Önal,et al.  A modified simplex approach for solving bilevel linear programming problems , 1993 .

[25]  Yi-Hsin Liu,et al.  Characterizing an optimal solution to the linear bilevel programming problem , 1994 .

[26]  J. Dennis,et al.  ALGORITHMS FOR BILEVEL OPTIMIZATION , 1994 .

[27]  Athanasios Migdalas,et al.  Bilevel programming in traffic planning: Models, methods and challenge , 1995, J. Glob. Optim..

[28]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[29]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[30]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[31]  Manoel B. Campêlo,et al.  A note on a modified simplex approach for solving bilevel linear programming problems , 2000, Eur. J. Oper. Res..

[32]  Simone Dantas,et al.  A Note on a Penalty Function Approach for Solving Bilevel Linear Programs , 2000, J. Glob. Optim..

[33]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[34]  Jie Lu,et al.  An extended Kuhn-Tucker approach for linear bilevel programming , 2005, Appl. Math. Comput..

[35]  Guangquan Zhang,et al.  On the definition of linear bilevel programming solution , 2005, Appl. Math. Comput..

[36]  Jie Lu,et al.  An extended Kth-best approach for linear bilevel programming , 2005, Appl. Math. Comput..

[37]  Charles Audet,et al.  A note on the definition of a linear bilevel programming solution , 2005, Appl. Math. Comput..