Wavelets in Economics and Finance: Past and Future

In this paper I review what insights we have gained about economic and financial relationships from the use of wavelets and speculate on what further insights we may gain in the future. Wavelets are treated as a 'lens' that enables the researcher to explore relationships that previously were unobservable.

[1]  J. B. Ramsey,et al.  The analysis of foreign exchange data using waveform dictionaries , 1997 .

[2]  Peter Guttorp,et al.  Wavelet analysis of covariance with application to atmospheric time series , 2000 .

[3]  Mark J. Jensen An Approximate Wavelet MLE of Short- and Long-Memory Parameters , 1999 .

[4]  Brandon Whitcher,et al.  Differentiating intraday seasonalities through wavelet multi-scaling , 2001 .

[5]  Brandon Whitcher,et al.  Simulating Gaussian Stationary Processes With Unbounded Spectra , 2001 .

[6]  David M. Grether,et al.  Analysis of Economic Time Series , 1980 .

[7]  Mark J. Jensen Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter , 1997 .

[8]  R. Gencay,et al.  Robustness of systematic risk across time scales , 2002 .

[9]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[10]  J. B. Ramsey,et al.  DECOMPOSITION OF ECONOMIC RELATIONSHIPS BY TIMESCALE USING WAVELETS , 1998, Macroeconomic Dynamics.

[11]  James O. Ramsay,et al.  Functional data analysis of the dynamics of the monthly index of nondurable goods production , 2002 .

[12]  Philip Hans Franses,et al.  Non-Linear Time Series Models in Empirical Finance , 2000 .

[13]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[14]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  J. Ramsey Regression over Timescale Decompositions: A Sampling Analysis of Distributional Properties , 1999 .

[16]  David R. Brillinger,et al.  Uses of cumulants in wavelet analysis , 1994, Optics & Photonics.

[17]  Brandon Whitcher,et al.  A wavelet solution to the spurious regression of fractionally differenced processes , 2003 .

[18]  James B. Ramsey,et al.  U.S. and Canadian industrial production indices as coupled oscillators , 2002 .

[19]  A. Walden,et al.  Wavelet Analysis and Synthesis of Stationary Long-Memory Processes , 1996 .

[20]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[21]  S. Fischer,et al.  Lectures on Macroeconomics , 1972 .

[22]  L. Breiman Better subset regression using the nonnegative garrote , 1995 .

[23]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[24]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[25]  Hong-Ye Gao,et al.  Applied wavelet analysis with S-plus , 1996 .

[26]  J. B. Ramsey,et al.  An Analysis of U.S. Stock Price Behavior Using Wavelets , 1995 .

[27]  On The Phase of Least-Asymmetric Scaling and Wavelet Filters , 1995 .

[28]  A. Tsybakov,et al.  Wavelets, approximation, and statistical applications , 1998 .

[29]  A. T. WaldenSTATISTICS The Scale Analysis of Bivariate Non-gaussian Time Series via Wavelet Cross-covariance , 1998 .

[30]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[31]  Bruno Torrésani,et al.  Practical Time-Frequency Analysis , 1998 .

[32]  James B. Ramsey,et al.  The Application of Wave Form Dictionaries to Stock Market Index Data , 1996 .

[33]  J. B. Ramsey,et al.  The Decomposition of Economic Relationships by Time Scale Using Wavelets: Expenditure and Income , 1998 .

[34]  R. Gencay,et al.  An Introduction to Wavelets and Other Filtering Methods in Finance and Economics , 2001 .

[35]  David J. Thomson,et al.  A Reanalysis of the Spectral Properties of Some Economic and Financial Time Series , 1999 .

[36]  Jogikal M. Jagadeesh,et al.  Wavelet and time-frequency analyses of electromyography for quantification of back muscle fatigue , 1999 .

[37]  Brandon J. Whitcher,et al.  Wavelet-Based Estimation for Seasonal Long-Memory Processes , 2004, Technometrics.

[38]  Todd R. Ogden,et al.  Wavelet Methods for Time Series Analysis , 2002 .

[39]  G. Janacek Non‐linear Time Series Models in Empirical Finance , 2003 .

[40]  Piotr Fryzlewicz,et al.  Forecasting non-stationary time series by wavelet process modelling , 2003 .

[41]  James B. Ramsey,et al.  The contribution of wavelets to the analysis of economic and financial data , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  Fionn Murtagh,et al.  Wavelet-based feature extraction and decomposition strategies for financial forecasting , 1998 .

[43]  Ta-Hsin Li,et al.  A Filter Bank Approach for Modeling and Forecasting Seasonal Patterns , 2002, Technometrics.

[44]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[45]  James B. Ramsey,et al.  If Nonlinear Models Cannot Forecast, What Use Are They? , 1996 .

[46]  Francis X. Diebold,et al.  Elements of Forecasting , 1997 .

[47]  Fionn Murtagh,et al.  Combining Neural Network Forecasts on Wavelet-transformed Time Series , 1997, Connect. Sci..

[48]  R. Gencay,et al.  Scaling properties of foreign exchange volatility , 2001 .