Non-Gaussian source localization via exploitation of higher-order cyclostationarity

Novel direction of arrival (DOA) estimation algorithms which exploits the non-Gaussian and cyclostationary nature of communication signals are explored. The proposed methods employ cyclic higher-order statistics (CHOS) of the array output and suppress additive Gaussian noise of unknown spectral content even when the noise shares common cycle frequencies with the nonGaussian signals of interest. CHOS are tolerant to non-Gaussian interferences with cycle frequencies other than those of the desired signals, and allow one to estimate consistently the DOAs of more sources (per cycle) with fewer sensors.<<ETX>>