Design of Observers for Takagi-Sugeno Systems with Immeasurable Premise Variables: an ℒ2 Approach

A new observer design method is proposed for Takagi-Sugeno systems with immeasurable premise variables. Since the state estimation error can be written as a perturbed system, then the proposed method is based on the L2 techniques to minimize the effect of the perturbations on the state estimation error. The convergence conditions of the observer are established by using the second method of Lyapunov and a quadratic function. These conditions are expressed in terms of Linear Matrix Inequalities (LMI). Finally, the performances of the proposed observer are improved by eigenvalues clustering in LMI region.

[1]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[2]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[3]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[4]  Kazuo Tanaka,et al.  Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs , 1998, IEEE Trans. Fuzzy Syst..

[5]  C. J. Lopez-Toribio,et al.  Fuzzy observers for nonlinear dynamic systems fault diagnosis , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[6]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[7]  R. Palm,et al.  Towards a systematic analysis of fuzzy observers , 1999, 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397).

[8]  D. Maquin,et al.  Diagnostic des systèmes linéaires , 2000 .

[9]  P. Bergsten,et al.  Thau-Luenberger observers for TS fuzzy systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[10]  P. Bergsten,et al.  Sliding mode observer for a Takagi Sugeno fuzzy system , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[11]  P. Bergsten,et al.  Fuzzy observers , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[12]  Rainer Palm,et al.  Observers for Takagi-Sugeno fuzzy systems , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[13]  J. Ragot,et al.  Nonquadratic stability analysis of Takagi-Sugeno models , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[14]  A. Akhenak Conception d'observateurs non linéaires par approche multimodèle : application au diagnostic , 2004 .

[15]  Thierry-Marie Guerra,et al.  Conditions of output stabilization for nonlinear models in the Takagi-Sugeno's form , 2006, Fuzzy Sets Syst..

[16]  Sangchul Won,et al.  A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design , 2006, Fuzzy Sets Syst..

[17]  D. Maquin,et al.  Conception de multi-observateurs à variables de décision non mesurables , 2007 .

[18]  B. Marx,et al.  Design of observers for TakagiߝSugeno descriptor systems with unknown inputs and application to fault diagnosis , 2007 .

[19]  J. Ragot,et al.  Design of sliding mode unknown input observer for uncertain Takagi-Sugeno model , 2007, 2007 Mediterranean Conference on Control & Automation.

[20]  B. M. Arx Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis , 2008 .