Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy
暂无分享,去创建一个
Eric Gendron | Robert J. Harris | Jeremy R. Allington-Smith | Robert R. Thomson | Alastair G. Basden | Debaditya Choudhury | Alexander Arriola | David G. MacLachlan | R. Thomson | J. Allington-Smith | E. Gendron | T. Birks | I. Gris-S'anchez | D. MacLachlan | T. Morris | D. Choudhury | A. Basden | A. Arrióla | I. Spaleniak | Tim A. Birks | Itandehui Gris-S'anchez | Timothy J. Morris | Izabela J. Spaleniak | A. Arriola
[1] I. McLean,et al. Ground-based and Airborne Instrumentation for Astronomy , 2006 .
[2] Hideki Takami,et al. Ground-based and Airborne Instrumentation for Astronomy III , 2008 .
[3] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[4] Richard H. Myers,et al. Analysis of on-sky MOAO performance of CANARY using natural guide stars , 2014, 1406.6008.
[5] J. Cruz,et al. "Photonic lantern" spectral filters in multi-core Fiber. , 2012, Optics express.
[6] T A Birks,et al. Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics. , 2012, Optics letters.
[7] Allan Sandage,et al. The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes. , 1962 .
[8] A. Sevin,et al. MOAO first on-sky demonstration with CANARY , 2011 .
[9] Sergio G Leon-Saval,et al. Beating the classical limit: a diffraction-limited spectrograph for an arbitrary input beam. , 2013, Optics express.
[10] R. Thomson,et al. The photonic lantern , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.
[11] Jan Swevers,et al. Ground-based and airborne instrumentation for astronomy , 2010 .
[12] T A Birks,et al. Ultrafast laser inscription of an integrated photonic lantern. , 2011, Optics express.
[13] T A Birks,et al. A complex multi-notch astronomical filter to suppress the bright infrared sky. , 2011, Nature communications.
[14] Robert J. Harris,et al. Development of integrated mode reformatting components for diffraction-limited spectroscopy. , 2015, Optics letters.
[15] Robert K. Tyson. Chapter 3 – Adaptive Optics Systems , 1991 .
[16] Colin Cunningham,et al. Future optical technologies for telescopes , 2009 .
[17] M. Mayor,et al. A Jupiter-mass companion to a solar-type star , 1995, Nature.
[18] Christian Schwab,et al. 'Modal-noise' in single-mode fibers: A cautionary note for high precision radial velocity instruments , 2015 .
[19] T. Hänsch,et al. Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel , 2015, 1502.04942.
[20] Eric Gendron,et al. Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy , 2015 .
[21] Nemanja Jovanovic,et al. Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm , 2014 .
[22] U. Lemke,et al. Modal noise prediction in fibre-spectroscopy I: Visibility and the coherent model , 2011, 1106.1288.
[23] J. G. Robertson,et al. Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging , 2012, 1210.0603.
[24] Michael Wegner,et al. Ground-based and Airborne Instrumentation for Astronomy III , 2010 .
[25] K. Miura,et al. Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.
[26] J. Bland-Hawthorn,et al. Multimode fiber devices with single-mode performance. , 2005, Optics letters.
[27] Robert J. Harris,et al. Applications of Integrated Photonic Spectrographs in astronomy , 2012, 1210.5885.
[28] Nemanja Jovanovic,et al. Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition. , 2013, Optics express.