Automatic classification of eclipsing binary stars using deep learning methods

[1]  M. Fedurco,et al.  ELISa: A new tool for fast modelling of eclipsing binaries , 2021, Astronomy & Astrophysics.

[2]  M. Fedurco,et al.  Light curve modelling of close eclipsing binaries , 2020 .

[3]  A. Prša,et al.  Beyond DC and MCMC: alternative algorithms and approaches to fitting light curves , 2020 .

[4]  A. Prša Modeling and Analysis of Eclipsing Binary Stars , 2018 .

[5]  Pavlos Protopapas,et al.  Deep Learning for Image Sequence Classification of Astronomical Events , 2018, Publications of the Astronomical Society of the Pacific.

[6]  S. Bloemen,et al.  PHYSICS OF ECLIPSING BINARIES. II. TOWARD THE INCREASED MODEL FIDELITY , 2016, 1609.08135.

[7]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[8]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[9]  J. Southworth The DEBCat detached eclipsing binary catalogue , 2014, 1411.1219.

[10]  O. Demircan,et al.  The Catalogue of Stellar Parameters from the Detached Double-Lined Eclipsing Binaries in the Milky Way , 2014, Publications of the Astronomical Society of Australia.

[11]  D. Smits,et al.  Modelling of W UMa-type variable stars , 2010 .

[12]  M. Holman,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2009 .

[13]  Edmondo Trentin,et al.  A Novel Connectionist System for Unconstrained Handwriting Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  J. Torra,et al.  A procedure for the classification of eclipsing binaries , 2007 .

[15]  J. Torra,et al.  A catalogue of eclipsing variables , 2006 .

[16]  L. M. Sarro,et al.  Automatic classification of eclipsing binaries light curves using neural networks , 2005, astro-ph/0511346.

[17]  A. Prsa,et al.  A Computational Guide to Physics of Eclipsing Binaries. I. Demonstrations and Perspectives , 2005, astro-ph/0503361.

[18]  R. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[19]  T. Pribulla,et al.  Catalogue of the field contact binary stars , 2003 .

[20]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[21]  P. Hauschildt,et al.  The use of the NextGen model atmospheres for cool giants in a light curve synthesis code , 2000, astro-ph/0010114.

[22]  Josef Kallrath,et al.  Eclipsing Binary Stars: Modeling and Analysis , 1999 .

[23]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[24]  Kuldip K. Paliwal,et al.  Bidirectional recurrent neural networks , 1997, IEEE Trans. Signal Process..

[25]  R. E. Wilson BINARY STAR LIGHT-CURVE MODELS , 1994 .

[26]  Y. T. Zhou,et al.  Computation of optical flow using a neural network , 1988, IEEE 1988 International Conference on Neural Networks.

[27]  H. Abt Normal and abnormal binary frequencies , 1983 .

[28]  R. E. Wilson Eccentric orbit generalization and simultaneous solution of binary star light and velocity curves , 1979 .

[29]  Robert E. Wilson,et al.  Realization of Accurate Close-Binary Light Curves: Application to MR Cygni , 1971 .

[30]  Alex Pappachen James,et al.  Overview of Long Short-Term Memory Neural Networks , 2019, Modeling and Optimization in Science and Technologies.

[31]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[32]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[33]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[34]  Y. Chauvin,et al.  Backpropagation: the basic theory , 1995 .

[35]  Yann LeCun,et al.  Generalization and network design strategies , 1989 .

[36]  Andy Davis,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.