Magnetorheology: Fluids, Structures and Rheology

Magnetorheological suspensions are complex fluids which show a transition from a liquid behavior to a solid one upon application of a magnetic field. This transition is due to the the attractive dipolar forces between the particles which have been magnetized by the applied field. The formation of a network of particles or aggregates throughout the suspension is the basic phenomena which is responsible for the strength of the solid phase. In this paper we shall give an overview on the fluids and their properties and we shall especially emphasize the interplay between magnetic forces which are responsible for the gelling of the suspension and on the other hand of hydrodynamic and thermal forces which contribute to break this gel and allow the suspension to flow. The combination of these three forces gives rise to a very rich rheology whose many aspects are still not understood.

[1]  Howard See,et al.  Advances in modelling the mechanisms and rheology of electrorheological fluids , 1999 .

[2]  G. Bossis,et al.  Yield stresses in magnetic suspensions , 1991 .

[3]  J. Mellema,et al.  The influence of particle size on the magnetorheological properties of an inverse ferrofluid , 2000 .

[4]  Fuller,et al.  Structure and dynamics of magnetorheological fluids in rotating magnetic fields , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  R. Anderson,et al.  THE ROTARY ELECTRORHEOLOGICAL EFFECT , 1995 .

[6]  L. C. Davis,et al.  RHEOLOGY OF MAGNETORHEOLOGICAL FLUIDS: MODELS AND MEASUREMENTS , 1996 .

[7]  Thomas C. Halsey,et al.  Fluctuation-induced couplings between defect lines or particle chains , 1990 .

[8]  Tao,et al.  Laser diffraction determination of the crystalline structure of an electrorheological fluid. , 1992, Physical review letters.

[9]  John Matthew Ginder,et al.  Synthesis and Properties of Novel Magnetorheological Fluids Having Improved Stability and Redispersibility , 1999 .

[10]  Daniel J. Klingenberg,et al.  Simulation of the dynamic oscillatory response of electrorheological suspensions: Demonstration of a relaxation mechanism , 1993 .

[11]  Rongjia Tao,et al.  Enhance the Yield Shear Stress of Magnetorheological Fluids , 2001 .

[12]  Norman M. Wereley,et al.  BEHAVIOR OF MAGNETORHEOLOGICAL FLUIDS UTILIZING NANOPOWDER IRON , 2002 .

[13]  Georges Bossis,et al.  Field induced structure in magneto and electro-rheological fluids , 1992 .

[14]  J. Melrose Brownian dynamics simulation of dipole suspensions under shear: the phase diagram , 1992 .

[15]  Gulley,et al.  Static shear stress of electrorheological fluids. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Martin,et al.  Rheology of electrorheological fluids. , 1992, Physical review letters.

[17]  H. Conrad,et al.  Structure and Interaction Force in a Model Magnetorheological System , 1996 .

[18]  Howard See,et al.  Mechanisms of Magneto- and Electro-Rheology: Recent Progress and Unresolved Issues , 2001 .

[19]  Daniel J. Klingenberg,et al.  Electrorheology : mechanisms and models , 1996 .

[20]  Teixeira,et al.  Structure of strongly dipolar fluids at low densities. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  S. Cutillas,et al.  Magnetorheology of Model Suspensions , 1998 .

[22]  J. David Carlson,et al.  MAGNETORHEOLOGICAL MATERIALS BASED ON IRON ALLOY PARTICLES , 1996 .

[23]  Mark R. Jolly,et al.  The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix , 1996 .

[24]  Structure of electrorheological fluids , 2000, cond-mat/0001348.

[25]  Liu,et al.  Simulation of the formation of nonequilibrium structures in magnetorheological fluids subject to an external magnetic field. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Charles F. Zukoski,et al.  Material Properties and the Electrorheological Response , 1993 .

[27]  G. Bossis,et al.  Structure induced in suspensions by a magnetic field , 1994 .

[28]  Robert A. Anderson,et al.  Chain model of electrorheology , 1996 .

[29]  R. Chantrell,et al.  Agglomerate formation in a magnetic fluid , 1982 .

[30]  Wu,et al.  Field-Induced Structures in Ferrofluid Emulsions. , 1995, Physical review letters.

[31]  James E. Martin,et al.  A light-scattering study of the nonlinear dynamics of electrorheological fluids in oscillatory shear , 1995 .

[32]  Meyer,et al.  Electric-field-induced association of colloidal particles. , 1989, Physical review letters.

[33]  James E. Martin Field-Induced Rheology in Uniaxial and Biaxial Fields , 1999 .

[34]  P. Atten,et al.  A CONDUCTION MODEL OF THE ELECTRORHEOLOGICAL EFFECT , 1994 .

[35]  H. P. Block,et al.  REVIEW ARTICLE: Electro-rheology , 1988 .

[36]  Sergei Gorodkin,et al.  Physical properties of magnetizable structure-reversible media , 1990 .

[37]  Georges Bossis,et al.  Influence of the particle size on the rheology of magnetorheological fluids , 1995 .

[38]  Hans Conrad,et al.  An analytical model for magnetorheological fluids , 2000 .

[39]  G. Bossis,et al.  Flow-induced transition from cylindrical to layered patterns in magnetorheological suspensions , 1998 .

[40]  Roger T. Bonnecaze,et al.  Yield stresses in electrorheological fluids , 1992 .

[41]  O Ok Park,et al.  Rheological properties and dispersion stability of magnetorheological (MR) suspensions , 2001 .

[42]  Hans Conrad,et al.  Quasistatic measurements on a magnetorheological fluid , 1996 .

[43]  J. Bacri,et al.  Parallel stripes of ferrofluid as a macroscopic bidimensional smectic , 1996 .

[44]  SHEAR BANDED FLOWS AND NEMATIC-TO-ISOTROPIC TRANSITION IN ER AND MR FLUIDS , 1999 .

[45]  M. Shliomis,et al.  Magnetic properties of ferrocolloids: The effect of interparticle interactions , 1987 .

[46]  A. Meunier,et al.  PHASE SEPARATION AND TURBIDITY OF ELECTRORHEOLOGICAL FLUIDS , 1996 .

[47]  Halsey,et al.  Surface and bulk energies of dipolar lattices. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[48]  Georges Bossis,et al.  Magnetorheology of magnetic holes compared to magnetic particles , 2000 .

[49]  Miklós Zrínyi,et al.  Gels with magnetic properties , 1996 .

[50]  D. Heyes,et al.  Brownian Dynamics Simulations of Electro-Rheological Fluids, II , 1990 .

[51]  R. E. Rosensweig,et al.  On magnetorheology and electrorheology as states of unsymmetric stress , 1995 .

[52]  B. Khusid,et al.  Structure, physical properties and dynamics of magnetorheological suspensions , 1986 .

[53]  John Matthew Ginder,et al.  Behavior of Magnetorheological Fluids , 1998 .

[54]  Toshio Kurauchi,et al.  Magnetroviscoelastic behavior of composite gels , 1995 .

[55]  R. Botet,et al.  Aggregation and Fractal Aggregates , 1987 .

[56]  Chaining in magnetic colloids in the presence of flow , 2000, cond-mat/0005282.

[57]  W. M. Winslow Induced Fibration of Suspensions , 1949 .

[58]  Daniel J. Klingenberg,et al.  Magnetorheology in viscoplastic media , 1999 .

[59]  J. David Carlson,et al.  What Makes a Good MR Fluid? , 2002 .

[60]  C. Zukoski,et al.  Electrorheological fluids as colloidal suspensions , 1989 .

[61]  Brownian electrorheological fluids as a model for flocculated dispersions , 1996 .

[62]  John Matthew Ginder,et al.  Magnetorheological elastomers: properties and applications , 1999, Smart Structures.

[63]  Halsey,et al.  Evolution of structure in a quiescent electrorheological fluid. , 1992, Physical review letters.

[64]  Y. Shiroyanagi,et al.  ELECTRORHEOLOGICAL FLUIDS UNDER SHEAR , 2001 .

[65]  Daniel J. Klingenberg,et al.  Electro- and magneto-rheology , 1998 .

[66]  G. Batchelor,et al.  Slender-body theory for particles of arbitrary cross-section in Stokes flow , 1970, Journal of Fluid Mechanics.

[67]  J. Mellema,et al.  Non-linear magnetorheological behaviour of an inverse ferrofluid , 1999 .

[68]  Structure evolution in a paramagnetic latex suspension , 1992 .

[69]  Georges Bossis,et al.  ELECTROACTIVE AND ELECTROSTRUCTURED ELASTOMERS , 2001 .

[70]  V. Filinov,et al.  On a statistical theory of magnetic fluids , 1985 .

[71]  Tao,et al.  Three-dimensional structure of induced electrorheological solid. , 1991, Physical review letters.

[72]  G. Bossis,et al.  Electrostatic interactions in slabs of polarizable particles , 1993 .

[73]  N. Willenbacher,et al.  Rheometry on magnetorheological (MR) fluids , 1996 .

[74]  A. Philipse,et al.  Linear viscoelasticity of an inverse ferrofluid. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[75]  L. C. Davis Model of magnetorheological elastomers , 1999 .

[76]  Zubarev,et al.  Effect of chainlike aggregates on dynamical properties of magnetic liquids , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[77]  K. Koyama RHEOLOGICAL SYNERGISTIC EFFECTS OF ELECTRIC AND MAGNETIC FIELDS IN IRON PARTICLE SUSPENSION , 1996 .

[78]  H. J. Richter,et al.  MR FLUIDS WITH NANO-SIZED MAGNETIC PARTICLES , 1996 .

[79]  DYNAMIC SIMULATION OF THE TEMPORAL RESPONSE OF MICROSTRUCTURE FORMATION IN MAGNETORHEOLOGICAL FLUIDS , 2001 .

[80]  Georges Bossis,et al.  Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models , 1997 .