Compositional Inhomogeneity of Multinary Semiconductor Nanoparticles: A Case Study of Cu2ZnSnS4

Probe-corrected scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize the inter- and intraparticle compositional inhomogeneity of multinary Cu2ZnSnS4 (CZTS) nanoparticles. CZTS nanoparticles were prepared following three distinct synthesis protocols described in the literature. Strong fluctuations in composition were observed for Cu and Zn in individual nanoparticles, independent of the synthesis method. Certain particles have regions that have compositions close to that of Cu2SnS3, as well as, in the extreme case, the presence of nearly pure ZnS species. This is an observation that has not been reported in prior studies of these systems and underscores the need to both more carefully study the polydispersity of multinary semiconductor nanoparticles (MSNs) and to improve synthetic protocols and characterization of MSNs. Notably—despite the observation of compositional fluctuations in individual nanoparticles—reactive sintering in Se vapor was shown to...

[1]  Rakesh Agrawal,et al.  Cu2ZnSn(S,Se)4 solar cells from inks of heterogeneous Cu–Zn–Sn–S nanocrystals , 2014 .

[2]  L. Dubrovinsky,et al.  Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase Ti O 2 , 2005 .

[3]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[4]  Hong-Gyu Park,et al.  CIS-ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. , 2013, Nanoscale.

[5]  Chongyin Yang,et al.  Controllable Synthesis of Cu2In2ZnS5 Nano/Microcrystals and Hierarchical Films and Applications in Dye-Sensitized Solar Cells , 2013 .

[6]  H. Stanley,et al.  Quantifying signals with power-law correlations: a comparative study of detrended fluctuation analysis and detrended moving average techniques. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  N. Pradhan,et al.  Mn-Doped Multinary CIZS and AIZS Nanocrystals. , 2012, The journal of physical chemistry letters.

[8]  F. Hofer,et al.  The stoichiometry of single nanoparticles of copper zinc tin selenide. , 2011, Chemical communications.

[9]  Jian Zhang,et al.  Quaternary Zn-Ag-In-Se quantum dots for biomedical optical imaging of RGD-modified micelles. , 2013, ACS applied materials & interfaces.

[10]  Heesun Yang,et al.  Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots , 2012 .

[11]  A. Cabot,et al.  Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. , 2012, Journal of the American Chemical Society.

[12]  Yang Yang,et al.  CZTS nanocrystals: a promising approach for next generation thin film photovoltaics , 2013 .

[13]  T. Sugimoto Preparation of monodispersed colloidal particles , 1987 .

[14]  Rakesh Agrawal,et al.  Earth Abundant Element Cu2Zn(Sn1−xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication , 2011 .

[15]  Rakesh Agrawal,et al.  Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance. , 2009, Nano letters.

[16]  M. Cardona,et al.  Absolute Raman scattering efficiencies of some zincblende and fluorite-type materials , 1982 .

[17]  Rakesh Agrawal,et al.  Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.

[18]  Yue Wu,et al.  Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. , 2012, Nano letters.

[19]  Matthew G. Panthani,et al.  CuInSe2 Quantum Dot Solar Cells with High Open-Circuit Voltage. , 2013, The journal of physical chemistry letters.

[20]  Howard Reiss,et al.  The Growth of Uniform Colloidal Dispersions , 1951 .

[21]  H. Hillhouse,et al.  Enhancing the performance of CZTSSe solar cells with Ge alloying , 2012 .

[22]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[23]  Zhiqun Lin,et al.  Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. , 2011, Angewandte Chemie.

[24]  Bo B. Iversen,et al.  Controlling Size, Crystallinity, and Electrochemical Performance of Li4Ti5O12 Nanocrystals , 2013 .

[25]  Q. Ma,et al.  A novel aptamer functionalized CuInS2 quantum dots probe for daunorubicin sensing and near infrared imaging of prostate cancer cells. , 2014, Analytica chimica acta.

[26]  J. Rajput,et al.  Synthesis and applications of CoFe2O4 nanoparticles for multicomponent reactions , 2013 .

[27]  E. Aydil,et al.  Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments , 2012 .

[28]  Shawn P. Shields,et al.  Kinetics and Mechanisms of Aggregative Nanocrystal Growth , 2014 .

[29]  Delia J. Milliron,et al.  Chemistry of Doped Colloidal Nanocrystals , 2013 .

[30]  K. Ou,et al.  Silica nanohybrids integrated with CuInS2/ZnS quantum dots and magnetite nanocrystals: multifunctional agents for dual-modality imaging and drug delivery , 2011 .

[31]  Joseph P. Fiore,et al.  Solvothermal Synthesis, Development, and Performance of LiFePO4 Nanostructures , 2013 .

[32]  Yang Yang,et al.  Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals. , 2013, Journal of the American Chemical Society.

[33]  P. P. Lottici,et al.  Phonon confinement effects in the Raman scattering by TiO2 nanocrystals , 1998 .

[34]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[35]  C. Handwerker,et al.  Kesterite Cu2ZnSn(S,Se)4 Absorbers Converted from Metastable, Wurtzite-Derived Cu2ZnSnS4 Nanoparticles , 2014 .

[36]  R. E. Tallman,et al.  Raman scattering in -ZnS , 2004 .

[37]  Yang Yang,et al.  Spatial element distribution control in a fully solution-processed nanocrystals-based 8.6% Cu2ZnSn(S,Se)4 device. , 2014, ACS nano.

[38]  Gangshan Wu,et al.  Controlled synthesis and characterization of covellite (CuS) nanoflakes , 2006 .

[39]  I. Olekseyuk,et al.  Phase equilibria in the Cu2S–ZnS–SnS2 system , 2004 .

[40]  Daniel J. Hellebusch,et al.  In vivo whole animal fluorescence imaging of a microparticle-based oral vaccine containing (CuInSe(x)S(2-x))/ZnS core/shell quantum dots. , 2013, Nano letters.

[41]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[42]  Lingyan Wang,et al.  Synthesis of size-controlled and shaped copper nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[43]  Rakesh Agrawal,et al.  Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.

[44]  Qiangfeng Xiao,et al.  Alloyed semiconductor nanocrystals with broad tunable band gaps. , 2009, Chemical communications.

[45]  A. D. Cunha,et al.  Study of polycrystalline Cu2ZnSnS4 films by Raman scattering , 2011 .

[46]  T. Sugimoto Underlying mechanisms in size control of uniform nanoparticles. , 2007, Journal of colloid and interface science.

[47]  Lijun Wu,et al.  Performance and image analysis of the aberration-corrected Hitachi HD-2700C STEM. , 2009, Journal of electron microscopy.

[48]  Rakesh Agrawal,et al.  9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks , 2015 .

[49]  Bengt Fadeel,et al.  Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. , 2010, Advanced drug delivery reviews.

[50]  H. Katagiri,et al.  The Influence of the Composition Ratio on CZTS-based Thin Film Solar Cells , 2009 .

[51]  H. Haeuseler,et al.  Far infrared studies on stannite and wurtzstannite type compounds , 1991 .

[52]  Haizheng Zhong,et al.  Tuning the Luminescence Properties of Colloidal I-III-VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. , 2012, The journal of physical chemistry letters.

[53]  M. Edoff,et al.  Cu out-diffusion in kesterites—A transmission electron microscopy specimen preparation artifact , 2013 .

[54]  G. Ozin,et al.  From sulfur-amine solutions to metal sulfide nanocrystals: peering into the oleylamine-sulfur black box. , 2011, Journal of the American Chemical Society.

[55]  D. Abou‐Ras,et al.  Improved performance of Ge‐alloyed CZTGeSSe thin‐film solar cells through control of elemental losses , 2015 .

[56]  B. Parkinson,et al.  Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.