Forecasting the energy produced by a windmill on a yearly basis

The objective of this article is to study as extensively as possible the uncertainties affecting the annual energy produced by a windmill. In the literature, the general approach is to estimate the mean annual energy from a transformation of a Weibull distribution law. Then the issue is reduced to estimating the coefficients of this distribution. This is obtained by classical statistical methods. Therefore, the uncertainties are mostly limited to those resulting from the statistical procedures. But in fact, the real uncertainty of the random variable which represents the annual energy cannot been reduced to the uncertainty on its mean and to the uncertainties induced from the estimation procedure. We propose here a model, which takes advantage of the fact that the annual energy production is the sum of many random variables representing the 10 min energy production during the year. Under some assumptions, we make use of the central limit theorem and show that an intrinsic uncertainties of wind power, usually not considered, carries an important risk. We also explain an observation coming from practice that the forecasted annual production is always overestimated, which creates a risk of reducing the profitability of the operation.

[1]  Stefano Tarantola,et al.  Uncertainty in Industrial Practice , 2008 .

[2]  T. W. Lambert,et al.  Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis , 2000 .

[3]  P. Doukhan,et al.  Weak Dependence: With Examples and Applications , 2007 .

[4]  K. Conradsen,et al.  Review of Weibull Statistics for Estimation of Wind Speed Distributions , 1984 .

[5]  J. A. Carta,et al.  Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study , 2005 .

[6]  Étienne De Rocquigny,et al.  La maîtrise des incertitudes dans un contexte industriel 1re partie : Une approche méthodologique globale basée sur des exemples , 2006 .

[7]  A. Belouchrani,et al.  Application of time–frequency representation in the study of the cyclical behavior of wind speed in Algeria: wavelet transform , 2010 .

[8]  J. A. Carta,et al.  Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions , 2007 .

[9]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[10]  J. A. Carta,et al.  A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands , 2009 .

[11]  Étienne De Rocquigny La maîtrise des incertitudes dans un contexte industriel. 2nde partie : revue des méthodes de modélisation statistique physique et numérique , 2006 .

[12]  A. Brett,et al.  The Autocorrelation of Hourly Wind Speed Observations , 1991 .

[13]  H. F. Xiang,et al.  Wind turbulence characteristics study at the Stonecutters Bridge site: Part II: Wind power spectra, integral length scales and coherences , 2009 .

[14]  David Ching-Fang Shih Wind characterization and potential assessment using spectral analysis , 2008 .

[15]  O. A. Jaramillo,et al.  Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case , 2004 .

[16]  A. Brett,et al.  The Characteristics of Wind Velocity that Favor the Fitting of a Weibull Distribution in Wind Speed Analysis , 1984 .

[17]  Xianguo Li,et al.  MEP-type distribution function: a better alternative to Weibull function for wind speed distributions , 2005 .

[18]  P. Doukhan Mixing: Properties and Examples , 1994 .

[19]  J. Torres,et al.  Fitting wind speed distributions: a case study , 1998 .

[20]  Tarantola Stefano,et al.  Uncertainty in Industrial Practice - A Guide to Quantitative Uncertainty Management , 2008 .

[21]  J. A. Carta,et al.  The use of wind probability distributions derived from the maximum entropy principle in the analysis of wind energy. A case study , 2006 .

[22]  Ali Naci Celik,et al.  Energy output estimation for small-scale wind power generators using Weibull-representative wind data , 2003 .

[23]  Arthur Charpentier,et al.  Wind in Ireland: long memory or seasonal effect? , 2006 .