The chemistry of excited NO/+/ in an aurora

The six most significant production and seven most significant loss mechanisms are identified for NO/sup +/(a/sup 3/..sigma..) in the aurora. Rate constants are given for these reactions as well as for the 14 most important reactions competing with the production of NO/sup +/(a). Using available data and certain crucial deductions on chemical reaction rates to simulate a number of altitude profiles, we have concluded that the two predominant sources of NO/sup +/(a/sup 3/..sigma..) are probably N/sup +/+O/sub 2/..-->..NO/sup +/(a) +O and N/sub 2//sup +/+NO..-->..NO/sup +/(a)+N/sub 2/. Radiative decay is not the primary loss mechanism but can dominate above 150 km. Destruction via charge exchange with N/sub 2/ and O are most important below 150 km. Total radiation in the a/sup 3/..sigma..--X/sup 1/..sigma.. transition is estimated to be between 35 R and 350 R for a model aurora 0f 78 ergs cm/sup -2/ s/sup -1/ energy input, which is nearly IBC III in intensity.

[1]  D. Albritton,et al.  Rate constants for the reactions of metastable NO+ (a3Σ+) ions with SO2, CO2, CH4, N2, Ar, H2, D2, and O2 at relative kinetic energies 0.04–2.5 eV , 1979 .

[2]  R. Zare,et al.  Potential energy curves for NO , 1979 .

[3]  M. Torr,et al.  Associative ionization of N(2D) and O , 1979 .

[4]  M. Torr,et al.  Recombination of NO/+/ in the mid-latitude trough and the polar ionization hole , 1979 .

[5]  R. Johnsen,et al.  Thermal energy charge transfer from He+ to O2 : Kinetic energy, nature, and reactivity of the O+ product ions , 1979 .

[6]  R. Marx,et al.  Energy disposal in thermal‐energy charge transfer reactions determined by kinetic energy measurements of product ions: Ne++O2→O++O+Ne and Ar++O2→O2++Ar , 1979 .

[7]  P. Feldman,et al.  Ultraviolet spectrum of the aurora (2000–2800 Å) , 1979 .

[8]  N. Adams,et al.  Measurement of the rates of reaction of the ground and metastable excited states of O2+, NO+ and O+ with atmospheric gases at thermal energy , 1978 .

[9]  F. Bien Measurements of the nitric oxide ion vibrational absorption coefficient and vibrational transfer to N2 , 1978 .

[10]  W. Pendleton,et al.  An Auroral Enhancement of O2λ1.27-μm Emission , 1978 .

[11]  Raymond G. Roble,et al.  Time-dependent studies of the aurora: Effects of particle precipitation on the dynamic morphology of ionospheric and atmospheric properties , 1977 .

[12]  S. Takezawa Rydberg series of NO converging to the ionic states b3Π, A1Π, and w3Δ , 1977 .

[13]  P. Hays,et al.  COORDINATED ROCKET AND SATELLITE MEASUREMENTS OF AN AURORAL EVENT , 1977 .

[14]  J. Hoffman,et al.  Daytime chemistry of NO+ from Atmosphere Explorer‐C measurements , 1977 .

[15]  E. Miescher High resolution absorption spectrum of nitric oxide (NO) in the region of the first ionization limit , 1976 .

[16]  D. Strobel,et al.  Auroral NO concentrations , 1976 .

[17]  V. Anicich,et al.  On the reaction of N+ ions with O2 , 1976 .

[18]  A. Nier,et al.  Recombination of NO+ in the ionosphere , 1976 .

[19]  A. V. Jones,et al.  Quenching of the N2 Vegard-Kaplan System in aurora , 1976 .

[20]  R. Zare,et al.  An Introduction to the Least-Squares Fitting of Spectroscopic Data , 1976 .

[21]  A. V. Jones A Model for the Excitation of Electron Aurora and Some Applications , 1975 .

[22]  D. Albritton,et al.  Laboratory measurements of the ionospheric O2 +(X²Π g ) and O2 +(a 4Π u ) Reactions With NO , 1975 .

[23]  A. Douglas,et al.  Laboratory Determination of the Frequencies of Possible Interstellar Lines of NO , 1975 .

[24]  H. Brinton In situ measurements of plasma drift velocity and enhanced NO/+/ in the auroral electrojet by the Bennett spectrometer on AE-C. [Atmosphere Explorer-C satellite , 1975 .

[25]  D. Albritton,et al.  Rate constants for the reactions of O2+(a 4Πu) ions with N2, Ar, CO, CO2,H2, and O2 at relative kinetic energies 0.04–2 eV , 1975 .

[26]  R. Kosmider,et al.  Collision processes of drifting O + and N + ions , 1975 .

[27]  A. V. Jones,et al.  Quantitative Spectroscopy of the Aurora. III. The Spectrum of Medium Intensity Aurora Between 3100 Å and 4700 Å , 1974 .

[28]  F. Fehsenfeld,et al.  Temperature dependence of some ionospheric ion-neutral reactions from 300°–900°K , 1974 .

[29]  R. Schunk,et al.  NO/+/ and O/+/ in the high latitude F-region , 1974 .

[30]  D. Albritton,et al.  Energy dependence and branching ratio of the N2 + + O reaction , 1974 .

[31]  W. Swider,et al.  Ion composition in an IBC class II aurora: 2. Model , 1974 .

[32]  A. V. Jones,et al.  Observation and interpretation of O2 1.27‐μ emission enhancements in aurora , 1973 .

[33]  R. Field The valence states of NO , 1973 .

[34]  M. Rees,et al.  Time dependent studies of the aurora—II. Spectroscopic morphology , 1973 .

[35]  M. Rees,et al.  Time dependent studies of the aurora—I. Ion density and composition , 1973 .

[36]  E. Stone,et al.  Electron‐Impact Excitation of Nitric Oxide , 1972 .

[37]  E. Murad,et al.  Study of Collisions between Low-Energy N+ and N2: Reaction Cross Sections, Isotopic Compositions, and Kinetic Energies of the Products , 1971 .

[38]  J. C. Walker,et al.  The influence of field-aligned currents on auroral electron temperatures , 1971 .

[39]  J. Tully,et al.  Crossed‐Beam Study of the Reaction N++O2→NO++O , 1971 .

[40]  William E. Sharp,et al.  Rocket-borne spectroscopic measurements in the ultraviolet aurora - Nitrogen Vegard-Kaplan bands , 1971 .

[41]  R. F. Holland,et al.  Emission from Long‐Lived States in Ion Beams. New Band Systems of NO+ , 1971 .

[42]  F. Fehsenfeld,et al.  Rate constants for the reaction of CO2+ with O, O2 and NO; N2+ with O and NO; and O2+ with NO , 1970 .

[43]  C. R. Brundle,et al.  Electronic Structure of NO2 Studied by Photoelectron and Vacuum‐uv Spectroscopy and Gaussian Orbital Calculations , 1970 .

[44]  W. L. Borst,et al.  Cross section forelectron-impact excitation of the /0,0/ first negative band of N2/plus/ from threshold to 3 kev , 1970 .

[45]  C. Jungen,et al.  Absorption spectrum of the NO molecule. IX. The structure of the f complexes, the ionization potential of NO, and the quadrupole moment of NO+ , 1969 .

[46]  M. A. Biondi Atmospheric electron–ion and ion–ion recombination processes , 1969 .

[47]  P. P. Ong,et al.  Calculation of interchange reaction rates by a `nearest resonance' method , 1968 .

[48]  J. Rutherford,et al.  Abundance of Excited Ions in an NO+ Ion Beam , 1968 .

[49]  K. Huber The excited electronic states of the NO+ ion , 1968 .

[50]  J. C. Walker,et al.  Ionospheric electron densities and temperatures in aurora , 1968 .

[51]  J. Hesser Absolute transition probabilities in ultraviolet molecular spectra. , 1968 .

[52]  I. Szabo,et al.  ON THE FIRST EXCITED STATE OF NO( , 1967 .

[53]  P. P. Ong,et al.  CALCULATION OF INTERCHANGE REACTION RATES FROM TRANSITION TIMES , 1967 .

[54]  R. Stebbings,et al.  CHARGE TRANSFER REACTIONS OF NITRIC OXIDE WITH ATOMIC AND MOLECULAR IONS OF OXYGEN AND NITROGEN , 1966 .

[55]  F. Fehsenfeld,et al.  Thermal Energy Ion—Neutral Reaction Rates. II. Some Reactions of Ionospheric Interest , 1966 .

[56]  R. Stebbings,et al.  Low-energy collisions between some atmospheric ions and neutral particles , 1966 .

[57]  Richard M. Badger,et al.  Absolute Intensities of the Discrete and Continuous Absorption Bands of Oxygen Gas at 1.26 and 1.065 μ and the Radiative Lifetime of the 1Δg State of Oxygen , 1965 .

[58]  D. Rapp,et al.  Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization , 1965 .

[59]  D. Rapp,et al.  Cross Sections for Dissociative Ionization of Molecules by Electron Impact , 1965 .

[60]  F. Gilmore Potential energy curves for N2, NO, O2 and corresponding ions , 1965 .

[61]  George Gioumousis,et al.  Reactions of Gaseous Molecule Ions with Gaseous Molecules. V. Theory , 1958 .

[62]  J. Hasted The exchange of charge between ions and atoms , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[63]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[64]  K. Rao Structure of the Cameron Bands of Carbon Monoxide. , 1949 .

[65]  H. Massey Collisions between atoms and molecules at ordinary temperatures , 1949 .

[66]  S. M. Naudé Quantum Analysis of the Rotational Structure of the First Positive Bands of Nitrogen (NFormula) , 1932 .

[67]  J. Tate,et al.  The Efficiencies of Ionization and Ionization Potentials of Various Gases Under Electron Impact , 1932 .

[68]  R. S. Mulliken The Interpretation of Band Spectra Part III. Electron Quantum Numbers and States of Molecules and Their Atoms , 1932 .