Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

[1]  J. Sigoillot,et al.  Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi , 2014, Fungal Biology and Biotechnology.

[2]  B. Ahring,et al.  Screening of carbon sources for beta-glucosidase production by Aspergillus saccharolyticus , 2014 .

[3]  Lei Yang,et al.  Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius , 2014, AMB Express.

[4]  Xiao Zhang,et al.  Selective conversion of biorefinery lignin into dicarboxylic acids. , 2014, ChemSusChem.

[5]  Niels Bjørn Hansen,et al.  Advancing USER cloning into simpleUSER and nicking cloning. , 2014, Journal of microbiological methods.

[6]  Stephen H. Brown,et al.  Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68 , 2014, Applied Microbiology and Biotechnology.

[7]  M. Xian,et al.  Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes , 2013, BioMed research international.

[8]  W. Nicol,et al.  Continuous and batch cultures of Escherichia coli KJ134 for succinic acid fermentation: metabolic flux distributions and production characteristics , 2013, Microbial Cell Factories.

[9]  R. Berka,et al.  Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid , 2013, Applied Microbiology and Biotechnology.

[10]  Stephen H. Brown,et al.  Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid , 2013, Applied Microbiology and Biotechnology.

[11]  Stephen H. Brown,et al.  Investigation of Malic Acid Production in Aspergillus oryzae under Nitrogen Starvation Conditions , 2013, Applied and Environmental Microbiology.

[12]  Shang-Tian Yang,et al.  Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose. , 2012, Metabolic engineering.

[13]  Xuebing Zhao,et al.  Biotechnological production of succinic acid: current state and perspectives , 2012 .

[14]  Chun’an Ma,et al.  Electrochemical Synthesis of Succinic Acid at a TiO2 Film Electrode Prepared by In-Situ Anodic Oxidation , 2012, International Journal of Electrochemical Science.

[15]  B. Ahring,et al.  β-glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass. , 2011, Canadian journal of microbiology.

[16]  Chang Dou,et al.  Production of Fumaric Acid by Rhizopus oryzae: Role of Carbon–Nitrogen Ratio , 2011, Applied biochemistry and biotechnology.

[17]  Christine Lang,et al.  Oxidative versus reductive succinic acid production in the yeast saccharomyces cerevisiae , 2011, Bioengineered bugs.

[18]  D. Weuster‐Botz,et al.  Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. , 2010, Metabolic engineering.

[19]  Wim Soetaert,et al.  Microbial succinic acid production: Natural versus metabolic engineered producers , 2010 .

[20]  J. J. Otero,et al.  Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger. , 2009, Metabolic engineering.

[21]  Xueli Zhang,et al.  Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C , 2008, Biotechnology and bioengineering.

[22]  Víctor González-Álvarez,et al.  Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130 , 2008 .

[23]  M. Ishii,et al.  Hydrogenobacter Acid Cycle of Reductase in the Reductive Tricarboxylic a Soluble Nadh-dependent Fumarate , 2008 .

[24]  Jong Myoung Park,et al.  Modeling of batch fermentation kinetics for succinic acid production by Mannheimia succiniciproducens , 2008 .

[25]  J. Nielsen,et al.  Enhanced citrate production through gene insertion in Aspergillus niger. , 2008, Metabolic engineering.

[26]  M. Sauer,et al.  Microbial production of organic acids: expanding the markets. , 2008, Trends in biotechnology.

[27]  Johnathan E. Holladay,et al.  Succinic Acid-A Model Building Block for Chemical Production from Renewable Resources , 2008 .

[28]  Maria Papagianni,et al.  Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. , 2007, Biotechnology advances.

[29]  Pål Börjesson,et al.  Industrial biotechnology for the production of bio-based chemicals--a cradle-to-grave perspective. , 2007, Trends in biotechnology.

[30]  A. Pandey,et al.  Gluconic Acid: Properties, Applications and Microbial Production , 2006 .

[31]  Frédéric Bringaud,et al.  A Mitochondrial NADH-dependent Fumarate Reductase Involved in the Production of Succinate Excreted by Procyclic Trypanosoma brucei* , 2005, Journal of Biological Chemistry.

[32]  P. C. Banerjee,et al.  Submerged production of oxalic acid from glucose by immobilized Aspergillus niger , 2005 .

[33]  L. Lange,et al.  Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine , 2012, Springer US.

[34]  S. B. Sawant,et al.  Reduction of Maleic Acid to Succinic Acid on Titanium Cathode , 2004 .

[35]  J. Magnuson,et al.  Organic Acid Production by Filamentous Fungi , 2004 .

[36]  C. Vieille,et al.  Effect of Overexpression of Actinobacillus succinogenes Phosphoenolpyruvate Carboxykinase on Succinate Production in Escherichia coli , 2004, Applied and Environmental Microbiology.

[37]  Y. Peleg,et al.  Malic acid accumulation by Aspergillus flavus , 1988, Applied Microbiology and Biotechnology.

[38]  Y. Peleg,et al.  Malic acid accumulation by Aspergillus flavus , 1988, Applied Microbiology and Biotechnology.

[39]  O. Singh,et al.  Gluconic acid production under varying fermentation conditions by Aspergillus niger , 2003 .

[40]  N. Biteau,et al.  Succinate Secreted by Trypanosoma brucei Is Produced by a Novel and Unique Glycosomal Enzyme, NADH-dependent Fumarate Reductase , 2002, The Journal of Biological Chemistry.

[41]  W. Burgstaller,et al.  Succinate synthesis and excretion by Penicillium simplicissimum under aerobic and anaerobic conditions. , 2002, FEMS microbiology letters.

[42]  R. Gunsalus,et al.  Succinate dehydrogenase and fumarate reductase from Escherichia coli. , 2002, Biochimica et biophysica acta.

[43]  J. Zeikus,et al.  Biotechnology of succinic acid production and markets for derived industrial products , 1999, Applied Microbiology and Biotechnology.

[44]  Y. Arikawa,et al.  Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. , 1999, Journal of bioscience and bioengineering.

[45]  X. Wang,et al.  Bioconversion of fumaric acid to succinic acid by recombinant E. coli. , 1998, Applied biochemistry and biotechnology.

[46]  G. Turner,et al.  Applied molecular genetics of filamentous fungi , 1992 .

[47]  Y. Peleg,et al.  Optimization of L‐malic acid production by Aspergillus flavus in a stirred fermentor , 1991, Biotechnology and bioengineering.

[48]  Y. Peleg,et al.  Localization of pyruvate carboxylase in organic acid-producing Aspergillus strains , 1990, Applied and environmental microbiology.

[49]  E. Zaady,et al.  Biochemical Aspects of Fumaric Acid Accumulation by Rhizopus arrhizus , 1986, Applied and environmental microbiology.

[50]  M. Hatch A simple spectrophotometric assay for fumarate hydratase in crude tissue extracts. , 1978, Analytical biochemistry.

[51]  M. L. Smith,et al.  Production of fumaric acid by Rhizopus arrhizus. , 1959, Applied microbiology.

[52]  W. Cleland,et al.  Studies on the formation of oxalic acid by Aspergillus niger. , 1956, The Journal of biological chemistry.