Unfolding Operator Method for Thin Domains with a Locally Periodic Highly Oscillatory Boundary

We analyze the behavior of solutions of the Poisson equation with homogeneous Neumann boundary conditions in a two-dimensional thin domain which presents locally periodic oscillations at the boundary. The oscillations are such that both the amplitude and period of the oscillations may vary in space. We obtain the homogenized limit problem and a corrector result by extending the unfolding operator method to the case of locally periodic media.

[1]  Willi Jäger,et al.  On the Roughness-Induced Effective Boundary Conditions for an Incompressible Viscous Flow , 2001 .

[2]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Domains with Holes , 2012, SIAM J. Math. Anal..

[3]  A. Muntean,et al.  Corrector estimates for the homogenization of a locally periodic medium with areas of low and high diffusivity , 2013, European Journal of Applied Mathematics.

[4]  Andrey L. Piatnitski,et al.  Homogenization of Boundary-Value Problem in a Locally Periodic Perforated Domain , 1998 .

[5]  The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain , 1994 .

[6]  Jack K. Hale,et al.  Réaction-diffusion equation on thin domains , 1992 .

[7]  Marcone C. Pereira,et al.  Semilinear parabolic problems in thin domains with a highly oscillatory boundary , 2011 .

[8]  Sébastien Martin,et al.  Rigorous Derivation of the Thin Film Approximation with Roughness-Induced Correctors , 2012, SIAM J. Math. Anal..

[9]  G. Allaire Homogenization and two-scale convergence , 1992 .

[10]  Alain Damlamian,et al.  Homogenization of oscillating boundaries , 2008 .

[11]  Doina Cioranescu,et al.  Periodic unfolding and homogenization , 2002 .

[12]  Laurent Chupin Roughness effect on Neumann boundary condition , 2012, Asymptot. Anal..

[13]  Adrian Muntean,et al.  Homogenisation of a locally periodic medium with areas of low and high diffusivity , 2011, European Journal of Applied Mathematics.

[14]  Didier Bresch,et al.  High Order Multi-Scale Wall-Laws, Part I : The Periodic Case , 2006 .

[15]  M. Mascarenhas,et al.  Optimization of non periodic homogenized microstructures , 1997 .

[16]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[17]  Geneviève Raugel,et al.  Dynamics of partial differential equations on thin domains , 1995 .

[18]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..

[19]  D. Gérard-Varet The Navier Wall Law at a Boundary with Random Roughness , 2007, 0711.3610.

[20]  Juan Casado-Díaz,et al.  Two-scale convergence for nonlinear Dirichlet problems in perforated domains , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[21]  P. Donato,et al.  An introduction to homogenization , 2000 .

[22]  Doina Cioranescu,et al.  Homogenization of Reticulated Structures , 1999 .

[23]  Locally periodic thin domains with varying period , 2014 .

[24]  Marcone C. Pereira,et al.  Homogenization in a thin domain with an oscillatory boundary , 2011, 1101.3503.

[25]  J. M. Arrieta,et al.  Thin domains with doubly oscillatory boundary , 2013, 1302.5643.

[26]  Marcone C. Pereira,et al.  The Neumann problem in thin domains with very highly oscillatory boundaries , 2011, 1104.0076.

[27]  Juan Casado-Díaz,et al.  Asymptotic Behavior of the Navier-Stokes System in a Thin Domain with Navier Condition on a Slightly Rough Boundary , 2013, SIAM J. Math. Anal..

[28]  Todd Arbogast,et al.  Derivation of the double porosity model of single phase flow via homogenization theory , 1990 .

[29]  Odel,et al.  TWO-SCALE CONVERGENCE FOR LOCALLY PERIODIC MICROSTRUCTURES AND HOMOGENIZATION OF PLYWOOD STRUCTURES , 2013 .

[30]  T. Mel'nyk,et al.  Asymptotic analysis of boundary-value problems in thin perforated domains with rapidly varying thickness , 2010 .

[31]  Christian Komo Influence of surface roughness to solutions of the Boussinesq equations with Robin boundary condition , 2015 .

[32]  Frédéric Valentin,et al.  Effective Boundary Conditions for Laminar Flows over Periodic Rough Boundaries , 1998 .