Open Issues in Pattern Recognition

The area of pattern recognition has developed itself into a mature engineering eld with many practical applications. This increased applicability, together with the development of sensors and computer resources, leads to new research areas and raises new questions. In this paper, old and new open issues are discussed that have to be faced in advancing real world applications. Some may only be overcome by brute force procedures, while others may be solved or circumvented either by novel and better procedures, or by a better understanding of their causes. Here, we will try to identify a number of open issues and define them as well as possible.

[1]  A. G. Arkad'ev,et al.  Computers and pattern recognition , 1967 .

[2]  Lev Goldfarb,et al.  On the foundations of intelligent processes - I. An evolving model for pattern learning , 1990, Pattern Recognit..

[3]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[4]  David H. Wolpert,et al.  The Mathematics of Generalization: The Proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning , 1994 .

[5]  David H. Wolpert,et al.  Mathematics of Generalization: Proceedings: SFI-CNLS Workshop on Formal Approaches to Supervised Learning (1992: Santa Fe, N. M.) , 1995 .

[6]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[7]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  R. C. Williamson,et al.  Classification on proximity data with LP-machines , 1999 .

[9]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[10]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[11]  Lev Goldfarb,et al.  Why Classical Models for Pattern Recognition are Not Pattern Recognition Models , 1999 .

[12]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[13]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[15]  David M. J. Tax,et al.  One-class classification , 2001 .

[16]  Robert P. W. Duin,et al.  The combining classifier: to train or not to train? , 2002, Object recognition supported by user interaction for service robots.

[17]  Fabio Roli,et al.  A note on core research issues for statistical pattern recognition , 2002, Pattern Recognit. Lett..

[18]  Ana L. N. Fred,et al.  Data clustering using evidence accumulation , 2002, Object recognition supported by user interaction for service robots.

[19]  Tin Kam Ho,et al.  Complexity Measures of Supervised Classification Problems , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  T. Subba Rao,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB , 2004 .

[21]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[22]  Horst Bunke,et al.  On Not Making Dissimilarities Euclidean , 2004, SSPR/SPR.

[23]  Glenn Fung,et al.  A Feature Selection Newton Method for Support Vector Machine Classification , 2004, Comput. Optim. Appl..

[24]  Javier M. Moguerza,et al.  Combining Kernel Information for Support Vector Classification , 2004, Multiple Classifier Systems.

[25]  Robert P. W. Duin,et al.  Support Vector Data Description , 2004, Machine Learning.

[26]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[27]  Robert P. W. Duin,et al.  Combining Dissimilarity-Based One-Class Classifiers , 2004, Multiple Classifier Systems.

[28]  D. Tax,et al.  The characterization of classification problems by classifier disagreements , 2004, ICPR 2004.

[29]  Elzbieta Pekalska,et al.  The Dissimilarity representations in pattern recognition. Concepts, theory and applications. , 2005 .

[30]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[31]  Robert P. W. Duin,et al.  STATISTICAL PATTERN RECOGNITION , 2005 .

[32]  Robert P. W. Duin,et al.  Prototype selection for dissimilarity-based classifiers , 2006, Pattern Recognit..