On the stability of Caffarelli-Kohn-Nirenberg inequality in $\R^2$

Dolbeault, Esteban and Loss \cite{DEL16} obtained an optimal rigidity result, that is, when $a<0$ and $b_{\mathrm{FS}}(a)\leq b<a+1$ the extremal function for best constant $\mathcal{S}_{a,b}>0$ of the following Caffarelli-Kohn-Nirenberg inequality is symmetry, \[ \mathcal{S}_{a,b}\left(\int_{\R^2}|x|^{-qb}|u|^q \mathrm{d}x\right)^{\frac{2}{q}} \leq \int_{\R^2}|x|^{-2a}|\nabla u|^2 \mathrm{d}x, \quad \mbox{for all}\quad u\in C^\infty_0(\R^2), \] where $b_{\mathrm{FS}}(a):=a-\frac{a}{\sqrt{a^2+1}}$, $q=\frac{2}{b-a}$. An important task is investigating the stability of critical points set $\mathcal{M}$ for this inequality. Firstly, we classify solutions of the linearized problem related to the extremals which fills the work of Felli and Schneider \cite{FS03}. When $b_{\mathrm{FS}}(a)<b<a+1$, we investigate the stability of previous inequality by using spectral estimate combined with a compactness argument that \begin{align*} \int_{\mathbb{R}^2}|x|^{-2a}|\nabla u|^2 \mathrm{d}x -\mathcal{S}_{a,b}\left(\int_{\mathbb{R}^2}|x|^{-qb}|u|^q \mathrm{d}x\right)^{\frac{2}{q}} \geq \mathcal{B} \mathrm{dist}(u,\mathcal{M})^2,\quad \mbox{for all}\quad u\in C^\infty_0(\R^2), \end{align*} for some $\mathcal{B}>0$, however it is false when $b=b_{\mathrm{FS}}(a)$, which extends the work of Wei and Wu \cite{WW22} to $\R^2$. Furthermore, we obtain the existence of minimizers for $\mathcal{B}$ which extends the recent work of K\"{o}nig \cite{Ko22-2}.

[1]  Shengbing Deng,et al.  Stability of Hardy-Sobolev inequality involving p-Laplace , 2023, 2301.07442.

[2]  Guozhen Lu,et al.  Stability of Hardy-Littlewood-Sobolev inequalities with explicit lower bounds , 2023, 2301.04097.

[3]  Tobias König Stability for the Sobolev inequality: existence of a minimizer , 2022, 2211.14185.

[4]  Tobias König On the sharp constant in the Bianchi-Egnell stability inequality , 2022, 2210.08482.

[5]  A. Figalli,et al.  Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence , 2022, 2209.08651.

[6]  Shengbing Deng,et al.  Some weighted fourth-order Hardy-Hénon equations , 2022, Journal of Functional Analysis.

[7]  Jean Dolbeault,et al.  Functional Inequalities: Nonlinear Flows and Entropy Methods as a Tool for Obtaining Sharp and Constructive Results , 2021, Milan Journal of Mathematics.

[8]  D. Bonheure,et al.  Bifurcation analysis of the Hardy-Sobolev equation , 2020, 2009.04195.

[9]  A. Figalli,et al.  Sharp gradient stability for the Sobolev inequality , 2020, Duke Mathematical Journal.

[10]  F. Takahashi,et al.  Some improvements for a class of the Caffarelli-Kohn-Nirenberg inequalities , 2018, Differential and Integral Equations.

[11]  J. Dolbeault,et al.  Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces , 2015, 1506.03664.

[12]  Enrico Valdinoci,et al.  Variational methods for non-local operators of elliptic type , 2012 .

[13]  Shibing Chen,et al.  Remainder terms in the fractional Sobolev inequality , 2012, 1205.5666.

[14]  G. Tarantello,et al.  On the Symmetry of Extremals for the Caffarelli-Kohn-Nirenberg Inequalities , 2009, 0907.1405.

[15]  B. Abdellaoui,et al.  Some improved Caffarelli-Kohn-Nirenberg inequalities , 2005 .

[16]  M. Willem,et al.  A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator , 2003 .

[17]  M. Willem,et al.  Caffarelli-Kohn-Nirenberg inequalities with remainder terms , 2003 .

[18]  C. Morpurgo Sharp inequalities for functional integrals and traces of conformally invariant operators , 2002 .

[19]  Vicentiu D. Rădulescu,et al.  Hardy-Sobolev inequalities with remainder terms , 2002 .

[20]  V. Felli,et al.  Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type , 2002, math/0203208.

[21]  Florin Catrina,et al.  On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions † , 2001 .

[22]  Juncheng Wei,et al.  On a Sobolev inequality with remainder terms , 1999 .

[23]  A. Ambrosetti,et al.  Perturbation of Δu+u(N+2)/(N−2)=0, the Scalar Curvature Problem in RN, and Related Topics , 1999 .

[24]  F. Pacard,et al.  Construction of singular limits for a semilinear elliptic equation in dimension 2 , 1997 .

[25]  G. Bianchi,et al.  A note on the Sobolev inequality , 1991 .

[26]  O. Rey The role of the green's function in a non-linear elliptic equation involving the critical Sobolev exponent , 1990 .

[27]  Elliott H. Lieb,et al.  Sobolev inequalities with remainder terms , 1985 .

[28]  Pierre-Louis Lions,et al.  The concentration-compactness principle in the Calculus of Variations , 1985 .

[29]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[30]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[31]  M. Grossi,et al.  On some weighted fourth-order equations , 2023, Journal of Differential Equations.

[32]  Juncheng Wei ON THE STABILITY OF CAFFARELLI-KOHN-NIRENBERG INEQUALITY , 2021 .

[33]  J. Dolbeault,et al.  The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions , 2008 .

[34]  E. Lutwak,et al.  Sharp Affine L P Sobolev Inequalities , 2002 .

[35]  Robert V. Kohn,et al.  First order interpolation inequalities with weights , 1984 .