CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS
暂无分享,去创建一个
David Lindley | Garrett Birkhoff | R. Tyrrell Rockafellar | Jacques-Louis Lions | Richard S. Varga | Werner C. Rheinboldt | Roger Penrose | Ivan Singer | Peter D. Lax | S. I. Rubinow | Cathleen S. Morawetz | Patrick Billingsley | J. Durbin | Sol I. Rubinow | Hans F. Weinberger | F. Hoppensteadt | R. Rockafellar | David Lindley | R. Varga | R. Penrose | P. Billingsley | W. Rheinboldt | G. Birkhoff | J. Lions | P. Lax | I. Singer | F. Hoppensteadt | H. Weinberger | C. Morawetz | J. Durbin | Patrick Billingsley
[1] G. Taylor. Stability of a Viscous Liquid Contained between Two Rotating Cylinders , 1923 .
[2] Jean Leray,et al. Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .
[3] Jean Leray,et al. Essai sur les mouvements plans d'un fluide visqueux que limitent des parois. , 1934 .
[4] Dr. M. G. Worster. Methods of Mathematical Physics , 1947, Nature.
[5] N. Bourbaki,et al. Elements de mathematique. Livre III. Topologie Generale , 1962, The Mathematical Gazette.
[6] J. Serrin. On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .
[7] C. Foiaș,et al. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .
[8] C. Castaing. Sur les multi-applications mesurables , 1967 .
[9] M. Atiyah,et al. Seminar on the Atiyah-Singer Index Theorem. , 1968 .
[10] R. Temam. Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .
[11] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[12] R. Temam. Sur la stabilité et la convergence de la méthode des pas fractionnaires , 1968 .
[13] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .
[14] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[15] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[16] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[17] F. Takens,et al. On the nature of turbulence , 1971 .
[18] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 1972 .
[19] A. Bensoussan,et al. Equations stochastiques du type Navier-Stokes , 1973 .
[20] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[21] R. Temam,et al. On the stationary statistical solutions of the Navier-Stokes equations and turbulence , 1975 .
[22] R. Temam. On the Euler equations of incompressible perfect fluids , 1975 .
[23] J. G. Heywood. On uniqueness questions in the theory of viscous flow , 1976 .
[24] F. Browder. Nonlinear operators and nonlinear equations of evolution in Banach spaces , 1976 .
[25] W. Mcneill. Plagues and Peoples , 1977, The Review of Politics.
[26] M. I. Višik,et al. Solutions statistiques homogènes des systèmes différentiels paraboliques et du système de Navier-Stokes , 1977 .
[27] Vladimir Scheffer. Hausdorff measure and the Navier-Stokes equations , 1977 .
[28] R. Temam,et al. Structure of the set of stationary solutions of the navier-stokes equations , 1977 .
[29] T. Benjamin. Bifurcation phenomena in steady flows of a viscous fluid. I. Theory , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[30] Vladimir Scheffer. The Navier-Stokes equations in space dimension four , 1978 .
[31] H. Swinney,et al. Hydrodynamic instabilities and the transition to turbulence , 1978 .
[32] I. Good,et al. Fractals: Form, Chance and Dimension , 1978 .
[33] R. Temam. Generic properties of Navier-Stokes equations , 1978 .
[34] R. Temam,et al. Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation , 1978 .
[35] M. Bercovier,et al. A finite element for the numerical solution of viscous incompressible flows , 1979 .
[36] I. Seymour. Some Problems of Control , 1980 .
[37] J. G. Heywood. Classical solutions of the Navier-Stokes equations , 1980 .
[38] R. Rautmann. Approximation Methods for Navier-Stokes Problems , 1980 .
[39] C. Bardos,et al. Bifurcation phenomena in mathematical physics and related topics : proceedings of the NATO Advanced Study Institute held at Cargèse, Corsica, France, June 24-July 7, 1979 , 1980 .
[40] R. Temam,et al. New a priori estimates for navier-stokes equations in dimension 3 , 1981 .
[41] T. Mullin,et al. Anomalous modes in the Taylor experiment , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[42] D. Ruelle. Differentiable dynamical systems and the problem of turbulence , 1981 .
[43] R. Temam. Behaviour at Time t=0 of the Solutions of Semi-Linear Evolution Equations. , 1982 .
[44] Thierry Aubin. Monge-Ampère Equations , 1982 .
[45] D. Ruelle. Large volume limit of the distribution of characteristic exponents in turbulence , 1982 .
[46] R. Temam,et al. Finite Parameter Approximative Structure of Actual Flows , 1982 .
[47] M. Feigenbaum. Some Formalism and Predictions of the Period-Doubling Onset of Chaos , 1982 .
[48] R. Temam,et al. Asymptotic numerical analysis for the Navier-Stokes equations, 1 , 1982 .
[49] O. Lanford. A computer-assisted proof of the Feigenbaum conjectures , 1982 .
[50] R. Temam,et al. Self-similar universal homogeneous statistical solutions of the Navier-Stokes equations , 1983 .
[51] R. Temam,et al. Asymptotic analysis of the navier-stokes equations , 1983 .
[52] E. Lieb. On characteristic exponents in turbulence , 1984 .
[53] D. Ruelle. Characteristic exponents for a viscous fluid subjected to time dependent forces , 1984 .
[54] R. Temam,et al. Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .
[55] R. Temam,et al. Determining modes and fractal dimension of turbulent flows , 1985, Journal of Fluid Mechanics.
[56] R. Temam,et al. Attractors Representing Turbulent Flows , 1985 .
[57] C. Foias,et al. On the behavior of the solutions of the Navier-Stokes equations lying on invariant manifolds , 1986 .
[58] J. Marsden. Lectures on geometric methods in mathematical physics , 1987 .
[59] R. Varga. Functional Analysis and Approximation Theory in Numerical Analysis , 1987 .
[60] C. Foias,et al. On the interaction of small and large eddies in two dimensional turbulent flows , 1987 .
[61] G. Sell,et al. On the computation of inertial manifolds , 1988 .
[62] J. Hale. Asymptotic Behavior of Dissipative Systems , 1988 .
[63] R. Temam,et al. On the dimension of the attractors in two-dimensional turbulence , 1988 .
[64] G. Sell,et al. Inertial manifolds for nonlinear evolutionary equations , 1988 .
[65] G. Sell,et al. Inertial manifolds for reaction diffusion equations in higher space dimensions , 1988 .
[66] R. Temam,et al. Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .
[67] H. Kreiss,et al. Smallest scale estimates for the Navier-Stokes equations for incompressible fluids , 1990 .
[68] R. Temam,et al. Nonlinear Galerkin methods: The finite elements case , 1990 .
[69] G. Duff. Derivative estimates for the Navier-Stokes equations in a three dimensional region , 1990 .
[70] R. Temam,et al. Approximate inertial manifolds and effective viscosity in turbulent flows , 1991 .
[71] R. Temam,et al. Inertial manifolds and the slow manifolds in meteorology , 1991, Differential and Integral Equations.
[72] G. Duff. Navier Stokes Derivative Estimates in Three Dimensions with Boundary Values and Body Forces , 1991, Canadian Journal of Mathematics.
[73] R. Temam,et al. Inertial manifolds and slow manifolds , 1991 .
[74] E. Titi. Un critére pour l'approximation des solutions périodiques des équations de Navier-Stokes , 1991 .
[75] Donald A. Jones,et al. Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .
[76] D. Chae. Some a priori estimates for weak solutions of the 3-D Navier-Stokes equations , 1992 .
[77] J. Mawhin. Generic Properties of Nonlinear Boundary Value Problems , 1992 .
[78] D. Elsworth. Computational Methods in Fluid Flow , 1993 .
[79] R. Temam,et al. Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method , 1993 .
[80] R. Rannacher,et al. On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method , 1993 .
[81] Y. Meyer,et al. Compensated compactness and Hardy spaces , 1993 .
[82] A. Debussche,et al. IC S THE NONLINEAR GALERKIN METHOD : A MULTI-SCALE METHOD APPLIED TO THE SIMULATION OF HOMOGENEOUS TURBULENT FLOWS , 2022 .
[83] Roger Temam,et al. Incompressible Computational Fluid Dynamics: New Emerging Methods in Numerical Analysis: Applications to Fluid Mechanics , 1993 .
[84] Stephen P. Ellner,et al. Detecting nonlinearity and chaos in epidemic data , 1993 .
[85] R. Temam,et al. Inertial Forms of Navier-Stokes Equations on the Sphere , 1993, chao-dyn/9304004.
[86] R. Temam,et al. Convergent families of approximate inertial manifolds , 1994 .
[87] Donald A. Jones,et al. On the effectiveness of the approximate inertial manifold—a computational study , 1995 .
[88] O. Diekmann. Mathematical Epidemiology of Infectious Diseases , 1996 .
[89] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[90] O. Diekmann,et al. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .
[91] Herbert W. Hethcote,et al. The Mathematics of Infectious Diseases , 2000, SIAM Rev..
[92] F. Brauer,et al. Mathematical Models in Population Biology and Epidemiology , 2001 .
[93] K. Roberts,et al. Thesis , 2002 .
[94] Horst R. Thieme,et al. Mathematics in Population Biology , 2003 .
[95] R. Kiehn. Turbulence and the Navier-Stokes equations , 2007, 0704.1596.
[96] M. Keeling,et al. Modeling Infectious Diseases in Humans and Animals , 2007 .
[97] E. Gekeler. Mathematical Methods for Mechanics , 2008 .
[98] B. Wong. THE NAVIER-STOKES EQUATIONS AND TURBULENCE , 2012 .