Production of rotationally cold methyl radicals in pulsed supersonic beams.

We present a comparison of two technically distinct methods for the generation of rotationally cold, pulsed supersonic beams of methyl radicals (CH3): a plate discharge source operating in the glow regime and a dielectric barrier discharge source. The results imply that the efficiency of both sources is comparable and that molecular beams with similar translational and rotational temperatures are formed. Methane (CH4) proved to be the most suitable radical precursor species.

[1]  Pavle Djuricanin,et al.  Magnetic Trapping of Cold Methyl Radicals. , 2016, Physical review letters.

[2]  S. Willitsch,et al.  Cold and intense OH radical beam sources. , 2016, The Review of scientific instruments.

[3]  U. Even “The Even-Lavie valve as a source for high intensity supersonic beam” , 2015 .

[4]  Pavle Djuricanin,et al.  Manipulation of translational motion of methyl radicals by pulsed magnetic fields. , 2013, Physical chemistry chemical physics : PCCP.

[5]  N. Balucani,et al.  Crossed-beam dynamics studies of the radical-radical combustion reaction O((3)P) + CH3 (methyl). , 2011, Physical chemistry chemical physics : PCCP.

[6]  U. Even,et al.  Dielectric barrier discharge source for supersonic beams. , 2009, The Review of scientific instruments.

[7]  M. Schäfer,et al.  Pulsed-field-ionization zero-kinetic-energy photoelectron spectroscopy of metastable He2: Ionization potential and rovibrational structure of He2+. , 2008, The Journal of chemical physics.

[8]  Jun Ye,et al.  A pulsed, low-temperature beam of supersonically cooled free radical OH molecules , 2004, physics/0406151.

[9]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[10]  J. J. Meulen,et al.  An intense pulsed electrical discharge source for OH molecular beams , 2001 .

[11]  T. Halfmann,et al.  A source for a high-intensity pulsed beam of metastable helium atoms , 2000 .

[12]  David T. Anderson,et al.  Jet-cooled molecular radicals in slit supersonic discharges: Sub-Doppler infrared studies of methyl radical , 1997 .

[13]  T. Imajo,et al.  New discharge modulation technique for detection of transient species produced in pulsed supersonic jet by color center laser spectroscopy , 1996 .

[14]  David T. Anderson,et al.  An intense slit discharge source of jet-cooled molecular ions and radicals (Trot < 30 K , 1996 .

[15]  J. Whitehead Molecular beam studies of free-radical processes: photodissociation, inelastic and reactive collisions , 1996 .

[16]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[17]  J. Nibler,et al.  266 NM CH3I PHOTODISSOCIATION : CH3 SPECTRA AND POPULATION DISTRIBUTIONS BY COHERENT RAMAN SPECTROSCOPY , 1994 .

[18]  G. N. Robinson,et al.  Crossed molecular beam studies of the reactions of methyl radicals with iodoalkanes , 1988 .

[19]  I. Powis,et al.  Rotational structure and predissociation dynamics of the methyl 4pz(v=0) Rydberg state investigated by resonance enhanced multiphoton ionization spectroscopy , 1988 .

[20]  J. W. Hudgens,et al.  Two photon resonance enhanced multiphoton ionization spectroscopy of gas phase O2 a 1Δg between 305–350 nm , 1987 .

[21]  J. Williams,et al.  Reactive scattering of a supersonic methyl beam , 1985 .

[22]  R. Weisman,et al.  Transient CARS spectroscopy of the ν1 band of methyl radical , 1984 .

[23]  J. W. Hudgens,et al.  Two photon resonance enhanced multiphoton ionization spectroscopy and state assignments of the methyl radical , 1983 .

[24]  P. Bernath,et al.  Difference frequency laser spectroscopy of the ν3 band of the CH3 radical , 1982 .

[25]  M. Lin,et al.  Multiphoton ionization of methyl radicals in the gas phase , 1982 .

[26]  K. Kawaguchi,et al.  Diode laser study of the ν2 band of the methyl radical , 1981 .

[27]  J. W. Hudgens,et al.  Detection of gas-phase methyl radicals using multiphoton ionization , 1981 .

[28]  E. A. McCullough,et al.  Molecular Beam Study of Polyatomic Free Radical Reactions. CH3+Cl2 and Br2 , 1972 .

[29]  L. Frost,et al.  Drift Velocity of Electrons in Helium , 1960 .

[30]  R. S. Treseder,et al.  Preparation, Analysis and Properties , 1949 .

[31]  J. Yates,et al.  Experimental Methods in the Physical Sciences , 2015 .

[32]  M. Morse 2 - Supersonic Beam Sources , 1996 .

[33]  J. Roth Industrial Plasma Engineering , 1995 .

[34]  J. Reece Roth,et al.  Industrial Plasma Engineering : Volume 1: Principles , 1995 .

[35]  E. Hirota High-resolution spectroscopy of transient molecules , 1985 .

[36]  J. P. Stone,et al.  Vapor pressure of di-tert-butyl peroxide , 1978 .

[37]  J. Raley,et al.  Decompositions of Di-t-Alkyl Peroxides. I. Kinetics , 1948 .