Mosaic-based positioning and improved motion-estimation methods for automatic navigation of submersible vehicles

Knowledge of the camera trajectory, which may be determined from the motions between consecutive frames of a video clip, can be used to register images for constructing image mosaics. We discuss a mosaic-based positioning framework for building photo-mosaics and concurrently utilizing them for improved positioning. In this approach, the mosaic is directly exploited in bounding the accumulation of position errors as we integrate the incremental motions of the camera. It is also shown that two earlier closed-form solutions for the estimation of motion directly from spatio-temporal image gradients, as for most gradient-based techniques based on the application of linear(ized) image motion constraint equations, are corrupted with systematic biases. These can be reduced significantly by incorporating the higher-order terms. We propose recursive methods to solve the new nonlinear constraint equations, and investigate the performance of the new solutions in a number of experiments with synthetic and real data.

[1]  David J. Fleet,et al.  Performance of optical flow techniques , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Thomas S. Huang,et al.  Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Jake K. Aggarwal,et al.  Mobile robot self-location using model-image feature correspondence , 1996, IEEE Trans. Robotics Autom..

[4]  R. L. Marks,et al.  Real-time video mosaicking of the ocean floor , 1995 .

[5]  Hans-Hellmut Nagel,et al.  Estimation of Optical Flow Based on Higher-Order Spatiotemporal Derivatives in Interlaced and Non-Interlaced Image Sequences , 1995, Artif. Intell..

[6]  H. Wallach,et al.  The kinetic depth effect. , 1953, Journal of experimental psychology.

[7]  Junku Yuh,et al.  A real-time vision-based stationkeeping system for underwater robotics applications , 1996, OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st Century.

[8]  H. H. Wang,et al.  Video mosaicking along arbitrary vehicle paths , 1996, Proceedings of Symposium on Autonomous Underwater Vehicle Technology.

[9]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[10]  R. N. Carpenter,et al.  Concurrent mapping and localization with FLS , 1998, Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles (Cat. No.98CH36290).

[11]  Steven A. Shafer,et al.  Dense Structure from a Dense Optical Flow Sequence , 1998, Comput. Vis. Image Underst..

[12]  Edward H. Adelson,et al.  Probability distributions of optical flow , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Andrea J. van Doorn,et al.  Invariant Properties of the Motion Parallax Field due to the Movement of Rigid Bodies Relative to an Observer , 1975 .

[14]  Alex Pentland,et al.  Recursive Estimation of Motion, Structure, and Focal Length , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Gérard G. Medioni,et al.  Map-based localization using the panoramic horizon , 1995, IEEE Trans. Robotics Autom..

[16]  R. L. Marks,et al.  Automatic visual station keeping of an underwater robot , 1994, Proceedings of OCEANS'94.

[17]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[18]  Gilad Adiv,et al.  Inherent Ambiguities in Recovering 3-D Motion and Structure from a Noisy Flow Field , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[20]  J. Gibson The perception of the visual world , 1951 .

[21]  José Santos-Victor,et al.  Underwater Video Mosaics as Visual Navigation Maps , 2000, Comput. Vis. Image Underst..

[22]  S. Negahdaripour,et al.  3-D mapping of sea floor scenes by stereo imaging , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[23]  Xun Xu,et al.  A real-time vision-based 3D motion estimation system for positioning and trajectory following , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[24]  Shahriar Negahdaripour,et al.  Undersea optical stationkeeping: Improved methods , 1991, J. Field Robotics.

[25]  Shahriar Negahdaripour,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004 .

[26]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[27]  Olivier D. Faugeras,et al.  The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.

[28]  Shahriar Negahdaripour,et al.  Direct estimation of motion from sea floor images for automatic station-keeping of submersible platforms , 1999 .

[29]  B. Kamgar-Parsi Registration algorithms for geophysical maps , 1997, Oceans '97. MTS/IEEE Conference Proceedings.

[30]  S. Negahdaripour,et al.  On shape and motion recovery from underwater imagery for 3D mapping and motion-based video compression , 1998, IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No.98CH36259).

[31]  John J. Leonard,et al.  Feature-based concurrent mapping and localization for AUVs , 1997, Oceans '97. MTS/IEEE Conference Proceedings.

[32]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[33]  Reinhard Koch,et al.  Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[34]  P. Lagstad Detecting linear motion of an object in a sequence of monocular underwater images , 1996, Proceedings of Symposium on Autonomous Underwater Vehicle Technology.

[35]  Shahriar Negahdaripour,et al.  Positioning and photo-mosaicking with long image sequences; comparison of selected methods , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[36]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  Xun Xu,et al.  Vision-based rov system , 2000 .

[38]  J.-M. Boucher,et al.  Underwater navigation by video sequence analysis , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[39]  Harpreet S. Sawhney,et al.  Robust Video Mosaicing through Topology Inference and Local to Global Alignment , 1998, ECCV.

[40]  Richard Szeliski,et al.  Bayesian modeling of uncertainty in low-level vision , 2011, International Journal of Computer Vision.

[41]  J. Santos-Victor,et al.  Underwater mosaicing and trajectory reconstruction using global alignment , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[42]  Emanuele Trucco,et al.  Finding the epipole from uncalibrated optical flow , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[43]  H C Longuet-Higgins,et al.  The visual ambiguity of a moving plane , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[44]  S. Tiwari Mosaicking of the ocean floor in the presence of three-dimensional occlusions in visual and side-scan sonar images , 1996, Proceedings of Symposium on Autonomous Underwater Vehicle Technology.

[45]  Reinhard Koch,et al.  Self-Calibration and Metric Reconstruction Inspite of Varying and Unknown Intrinsic Camera Parameters , 1999, International Journal of Computer Vision.

[46]  M. Aldon,et al.  MULTIBEAM SONAR IMAGE UNDERWATER NAVIGATION MATCHING FOR TERRAIN-BASED 0 . Straws , .

[47]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[48]  S. Negahdaripour,et al.  3-D motion and depth estimation from sea-floor images for mosaic-based station-keeping and navigation of ROVs/AUVs and high-resolution sea-floor mapping , 1998, Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles (Cat. No.98CH36290).

[49]  Shahriar Negahdaripour,et al.  Revised Definition of Optical Flow: Integration of Radiometric and Geometric Cues for Dynamic Scene Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .

[51]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.