Partial differential equations with Robin boundary condition in online social networks

In recent years, online social networks such as Twitter, have become a major source of information exchange and research on information diffusion in social networks has been accelerated. Partial differential equations are proposed to characterize temporal and spatial patterns of information diffusion over online social networks. The new modeling approach presents a new analytic framework towards quantifying information diffusion through the interplay of structural and topical influences. In this paper we develop a non-autonomous diffusive logistic model with indefinite weight and the Robin boundary condition to describe information diffusion in online social networks. It is validated with a real dataset from an online social network, Digg.com. The simulation shows that the logistic model with the Robin boundary condition is able to more accurately predict the density of influenced users. We study the bifurcation, stability of the diffusive logistic model with heterogeneity in distance. The bifurcation and stability results of the model information describe either information spreading or vanishing in online social networks.

[1]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  P. Hartman,et al.  ON AN ORDINARY DIFFERENTIAL EQUATION , 2010 .

[4]  Naren Ramakrishnan,et al.  Epidemiological modeling of news and rumors on Twitter , 2013, SNAKDD '13.

[5]  Jure Leskovec,et al.  Modeling Information Diffusion in Implicit Networks , 2010, 2010 IEEE International Conference on Data Mining.

[6]  Anotida Madzvamuse,et al.  Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains , 2010, Journal of mathematical biology.

[7]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[8]  Haiyan Wang,et al.  On the Existence of Positive Solutions of Fourth-Order Ordinary Differential Equations , 1995 .

[9]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[10]  Hong Fei,et al.  Modeling Social Cascade in the Flickr Social Network , 2009, 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery.

[11]  Xiaohua Jia,et al.  Characterizing Information Diffusion in Online Social Networks with Linear Diffusive Model , 2013, 2013 IEEE 33rd International Conference on Distributed Computing Systems.

[12]  Chris Cosner,et al.  Diffusive logistic equations with indefinite weights: population models in disrupted environments , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  Qiulin Tang,et al.  The asymptotic analysis of an insect dispersal model on a growing domain , 2011 .

[14]  Haiyan Wang,et al.  Discovering Shared Interests in Online Social Networks , 2012, 2012 32nd International Conference on Distributed Computing Systems Workshops.

[15]  Krishna P. Gummadi,et al.  Characterizing social cascades in flickr , 2008, WOSN '08.

[16]  W. Allegretto,et al.  A Picone's identity for the p -Laplacian and applications , 1998 .

[17]  P. Hartman Ordinary Differential Equations , 1965 .

[18]  Zeynep Tufekci,et al.  Big Data: Pitfalls, Methods and Concepts for an Emergent Field , 2013 .

[19]  A. Rodríguez-Bernal,et al.  Extremal equilibria for reaction-diffusion equations in bounded domains and applications ✩ , 2008 .

[20]  F. M. Arscott,et al.  PERIODIC‐PARABOLIC BOUNDARY VALUE PROBLEMS AND POSITIVITY , 1992 .

[21]  Haiyan Wang,et al.  Modeling Information Diffusion in Online Social Networks with Partial Differential Equations , 2013, Surveys and Tutorials in the Applied Mathematical Sciences.

[22]  P. Hess,et al.  Periodic-Parabolic Boundary Value Problems and Positivity , 1991 .

[23]  Kristina Lerman,et al.  A framework for quantitative analysis of cascades on networks , 2010, WSDM '11.

[24]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[25]  J. Langa,et al.  On the long time behavior of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method , 2010 .

[26]  K. J. Brown,et al.  On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions , 1999 .

[27]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[28]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[29]  Kristina Lerman,et al.  Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks , 2010, ICWSM.

[30]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[31]  M. Picone Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second'ordine , 1909 .

[32]  Ravi Kumar,et al.  Structure and evolution of online social networks , 2006, KDD '06.

[33]  Anja Feldmann,et al.  Understanding online social network usage from a network perspective , 2009, IMC '09.

[34]  Aníbal Rodríguez-Bernal,et al.  Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems , 2007 .

[35]  Haiyan Wang,et al.  The free boundary problem describing information diffusion in online social networks , 2013 .

[36]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations: Cantrell/Diffusion , 2004 .

[37]  Y. Lou,et al.  Some Challenging Mathematical Problems in Evolution of Dispersal and Population Dynamics , 2008 .

[38]  José A. Langa,et al.  Permanence and Asymptotically Stable Complete Trajectories for Nonautonomous Lotka-Volterra Models with Diffusion , 2009, SIAM J. Math. Anal..

[39]  EXISTENCE, UNIQUENESS AND ATTRACTIVITY PROPERTIES OF POSITIVE COMPLETE TRAJECTORIES FOR NON-AUTONOMOUS REACTION-DIFFUSION PROBLEMS , 2007 .

[40]  Virgílio A. F. Almeida,et al.  Characterizing user behavior in online social networks , 2009, IMC '09.

[41]  Scott Counts,et al.  Comparing Information Diffusion Structure in Weblogs and Microblogs , 2010, ICWSM.

[42]  Balachander Krishnamurthy,et al.  Network level footprints of facebook applications , 2009, IMC '09.

[43]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[44]  Chenhao Tan,et al.  On the Interplay between Social and Topical Structure , 2011, ICWSM.

[45]  J. David Logan Applied Partial Differential Equations , 1998 .

[46]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[47]  Jure Leskovec,et al.  Information diffusion and external influence in networks , 2012, KDD.