$h$ and $hp$-adaptive Interpolation by Transformed Snapshots for Parametric and Stochastic Hyperbolic PDEs

The numerical approximation of solutions of parametric or stochastic hyperbolic PDEs is still a serious challenge. Because of shock singularities, most methods from the elliptic and parabolic regime, such as reduced basis methods, POD or polynomial chaos expansions, show a poor performance. Recently, Welper [Interpolation of functions with parameter dependent jumps by transformed snapshots. SIAM Journal on Scientific Computing, 39(4):A1225-A1250, 2017] introduced a new approximation method, based on the alignment of the jump sets of the snapshots. If the structure of the jump sets changes with parameter, this assumption is too restrictive. However, these changes are typically local in parameter space, so that in this paper, we explore $h$ and $hp$-adaptive methods to resolve them. Since local refinements do not scale to high dimensions, we introduce an alternative "tensorized" adaption method.

[1]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[2]  Mario Ohlberger,et al.  Reduced Basis Methods: Success, Limitations and Future Challenges , 2015, 1511.02021.

[3]  G. Rozza,et al.  Stabilized reduced basis method for parametrized advection-diffusion PDEs , 2014 .

[4]  David Amsallem,et al.  Robust Model Reduction by $L^1$-norm Minimization and Approximation via Dictionaries: Application to Linear and Nonlinear Hyperbolic Problems , 2015, 1506.06178.

[5]  Benjamin Stamm,et al.  Model Order Reduction for Problems with Large Convection Effects , 2018, Computational Methods in Applied Sciences.

[6]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[7]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[8]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[9]  Anthony T. Patera,et al.  An "hp" Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations , 2010, SIAM J. Sci. Comput..

[10]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[11]  Volker Mehrmann,et al.  The Shifted Proper Orthogonal Decomposition: A Mode Decomposition for Multiple Transport Phenomena , 2015, SIAM J. Sci. Comput..

[12]  Gerrit Welper,et al.  Interpolation of Functions with Parameter Dependent Jumps by Transformed Snapshots , 2017, SIAM J. Sci. Comput..

[13]  L. Evans Measure theory and fine properties of functions , 1992 .

[14]  Anthony T. Patera,et al.  "Natural norm" a posteriori error estimators for reduced basis approximations , 2006, J. Comput. Phys..

[15]  Jan S. Hesthaven,et al.  Uncertainty analysis for the steady-state flows in a dual throat nozzle , 2005 .

[16]  Shi Jin,et al.  A Well-Balanced Stochastic Galerkin Method for Scalar Hyperbolic Balance Laws with Random Inputs , 2016, J. Sci. Comput..

[17]  Bruno Després,et al.  Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method , 2013, Uncertainty Quantification in Computational Fluid Dynamics.

[18]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[19]  Dongbin Xiu,et al.  Generalised Polynomial Chaos for a Class of Linear Conservation Laws , 2012, J. Sci. Comput..

[20]  A. Quarteroni,et al.  Reduced Basis Techniques For Nonlinear Conservation Laws , 2015 .

[21]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[22]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[23]  E. Süli,et al.  hp-finite element methods for hyperbolic problems , 1999 .

[24]  Bernard Haasdonk,et al.  Reduced Basis Method for Explicit Finite Volume Approximations of Nonlinear Conservation Laws , 2008 .

[25]  Jean-Frédéric Gerbeau,et al.  Approximated Lax pairs for the reduced order integration of nonlinear evolution equations , 2014, J. Comput. Phys..

[26]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[27]  Wolfgang Dahmen HOW TO BEST SAMPLE A SOLUTION MANIFOLD , 2015 .

[28]  Alexandre Ern,et al.  Adaptive Anisotropic Spectral Stochastic Methods for Uncertain Scalar Conservation Laws , 2012, SIAM J. Sci. Comput..

[29]  Marjorie A. McClain,et al.  A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2014, ACM Trans. Math. Softw..

[30]  G. Iaccarino,et al.  Numerical methods for uncertainty propagation in high speed flows , 2010 .

[31]  Anthony T. Patera,et al.  A SPACE-TIME CERTIFIED REDUCED BASIS METHOD FOR BURGERS' EQUATION , 2014 .

[32]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[33]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[34]  Jan Nordström,et al.  A stochastic Galerkin method for the Euler equations with Roe variable transformation , 2014, J. Comput. Phys..

[35]  G. Iaccarino,et al.  Reduced order models for parameterized hyperbolic conservations laws with shock reconstruction , 2012 .

[36]  Benjamin Stamm,et al.  Parameter multi‐domain ‘hp’ empirical interpolation , 2012 .

[37]  Mario Ohlberger,et al.  Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing , 2013 .

[38]  Jan Nordström,et al.  Efficiency of Shock Capturing Schemes for Burgers' Equation with Boundary Uncertainty , 2010 .

[39]  Guannan Zhang,et al.  Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.

[40]  Albert Cohen,et al.  Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.

[41]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[42]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[43]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[44]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[45]  Damiano Lombardi,et al.  Reduced-Order Modeling based on Approximated Lax Pairs , 2012 .

[46]  Dongbin Xiu,et al.  Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions , 2013, J. Comput. Phys..

[47]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[48]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[49]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[50]  Maximilian Mair,et al.  Chebyshev interpolation for parametric option pricing , 2015, Finance Stochastics.

[51]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[52]  Wolfgang Dahmen,et al.  DOUBLE GREEDY ALGORITHMS: REDUCED BASIS METHODS FOR TRANSPORT DOMINATED PROBLEMS ∗ , 2013, 1302.5072.

[53]  Donsub Rim,et al.  Transport Reversal for Model Reduction of Hyperbolic Partial Differential Equations , 2017, SIAM/ASA J. Uncertain. Quantification.

[54]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[55]  Ivo Babuška,et al.  The h, p and h-p version of the finite element method: basis theory and applications , 1992 .