A Component-Based Localization Algorithm for Sparse Sensor Networks Combining Angle and Distance Information

Location information of sensor nodes plays a critical role in many wireless sensor network (WSN) applications and protocols. Although many localization algorithms have been proposed in recent years, they usually target at dense networks and perform poorly in sparse networks. In this paper, we propose two component-based localization algorithms that can localize many more nodes in sparse networks than the state-of-the-art solution. We first develop the Basic Common nodes-based Localization Algorithm, namely BCLA, which uses both common nodes and measured distances between adjacent components to merge components. BCLA outperforms CALL, the state-of-the-art component-based localization algorithm that uses only distance measurements to merge components. In order to further improve the performance of BCLA, we further exploit the angular information among nodes to merge components, and propose the Component-based Localization with Angle and Distance information algorithm, namely CLAD. We prove the merging conditions for BCLA and CLAD, and evaluate their performance through extensive simulations. Simulations results show that, CLAD can locate more than 90 percent of nodes in a sparse network with average node degree 7.5, while CALL can locate only 78 percent of nodes in the same scenario.