An optimized kinetic model of H2/CO combustion

[1]  Hai Wang,et al.  A new approach to response surface development for detailed gas‐phase and surface reaction kinetic model optimization , 2003 .

[2]  Peter J Seiler,et al.  Prediction uncertainty from models and data , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[3]  A. Wagner,et al.  Rate Constants For H + O2 + M → HO2 + M in Seven Bath Gases , 2002 .

[4]  J. Troe,et al.  Theoretical studies of the HO + O HO2 H + O2 reaction. II. Classical trajectory calculations on an ab initio potential for temperatures between 300 and 5000 K. , 2001 .

[5]  Gerard M. Faeth,et al.  Flame/stretch interactions of premixed hydrogen-fueled flames: measurements and predictions , 2001 .

[6]  Branko Ruscic,et al.  Evidence for a Lower Enthalpy of Formation of Hydroxyl Radical and a Lower Gas-Phase Bond Dissociation Energy of Water , 2001 .

[7]  Michael Frenklach,et al.  OH(OD) + CO: Measurements and an Optimized RRKM Fit , 1998 .

[8]  Richard A. Yetter,et al.  High pressure studies of moist carbon monoxide/nitrous oxide kinetics , 1997 .

[9]  Kendrick Aung,et al.  Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure , 1997 .

[10]  A. Mebel,et al.  Abinitio molecular orbital study of the HCO+O2 reaction: Direct versus indirect abstraction channels , 1996 .

[11]  J. Troe,et al.  Shock wave studies of the reactions HO+H2O2→H2O+HO2 and HO+HO2→H2O+O2 between 930 and 1680 K , 1995 .

[12]  Michael J. Pilling,et al.  Evaluated Kinetic Data for Combustion Modelling , 1992 .

[13]  Jürgen Troe,et al.  Shock wave study of the reaction HO2+HO2→H2O2+O2 : Confirmation of a rate constant minimum near 700 K , 1990 .

[14]  R. Zellner,et al.  Pressure and temperature dependence of the gas-phase recombination of hydroxyl radicals , 1988 .

[15]  L. F. Keyser Kinetics of the reaction hydroxyl + hydroperoxo .fwdarw. water + oxygen from 254 to 382 K , 1988 .

[16]  P. R. Westmoreland,et al.  Prediction of rate constants for combustion and pyrolysis reactions by bimolecular QRRK , 1986 .

[17]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[18]  A. K. Oppenheim,et al.  Autoignition in methanehydrogen mixtures , 1984 .

[19]  K. A. Bhaskaran,et al.  Shock tube study of the effect of unsymmetric dimethyl hydrazine on the ignition characteristics of hydrogen-air mixtures , 1973 .

[20]  G. B. Skinner,et al.  Ignition Delays of a Hydrogen—Oxygen—Argon Mixture at Relatively Low Temperatures , 1965 .

[21]  Chung King Law,et al.  Outward propagation, burning velocities, and chemical effects of methane flames up to 60 ATM , 2002 .

[22]  Prankul Middha,et al.  A first-principle calculation of the binary diffusion coefficients pertinent to kinetic modeling of hydrogen/oxygen/helium flames , 2002 .

[23]  R. Hanson,et al.  Direct measurements of the reaction H + CH2O → H2 + HCO behind shock waves by means of Vis–UV detection of formaldehyde , 2002 .

[24]  J. Troe Detailed modeling of the temperature and pressure dependence of the reaction H+O2 (+M)→HO2 (+M) , 2000 .

[25]  Vitali V. Lissianski,et al.  Combustion chemistry of propane: A case study of detailed reaction mechanism optimization , 2000 .

[26]  Chung King Law,et al.  Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres , 2000 .

[27]  Joe V. Michael,et al.  Initiation in H2/O2: Rate constants for H2+O2→H+HO2 at high temperature , 2000 .

[28]  R. Yetter,et al.  Flow reactor studies and kinetic modeling of the H2/O2 reaction , 1999 .

[29]  Richard A. Yetter,et al.  FLOW REACTOR STUDIES AND KINETIC MODELING OF THE H2/O2/NOX AND CO/H2O/O2/NOX REACTIONS , 1999 .

[30]  Peter J. Ashman,et al.  Rate coefficient of H+O2+M→HO2+M (M=H2O, N2, Ar, CO2) , 1998 .

[31]  Robert J. Kee,et al.  PREMIX :A F ORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames , 1998 .

[32]  J. Troe Modeling the temperature and pressure dependence of the reaction HO+CO ixHOCO ixH+CO2 , 1998 .

[33]  F. Egolfopoulos,et al.  Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air , 1994 .

[34]  I. McLean,et al.  The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction , 1994 .

[35]  Richard A. Yetter,et al.  New results on moist CO oxidation: high pressure, high temperature experiments and comprehensive kinetic modeling , 1994 .

[36]  R. Hanson,et al.  A shock tube study of the CO+OH→CO2+H reaction , 1994 .

[37]  Chung King Law,et al.  Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique , 1994 .

[38]  F. Egolfopoulos,et al.  A unified chain-thermal theory of fundamental flammability limits , 1992 .

[39]  Michael Frenklach,et al.  Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane , 1992 .

[40]  J. Bian,et al.  Validation of H2/O2 reaction mechanisms by comparison with the experimental structure of a rich hydrogen-oxygen flame , 1991 .

[41]  Alan Williams,et al.  The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures , 1991 .

[42]  F. Egolfopoulos,et al.  An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations , 1991 .

[43]  Klaus Luther,et al.  Theory of thermal unimolecular reactions in the fall-off range. 2. Weak collision rate constants , 1983 .

[44]  Anthony M. Dean,et al.  A shock tube study of the H2/O2/CO/Ar and H2/N2O/CO/Ar Systems: Measurement of the rate constant for H + N2O = N2 + OH , 1978 .

[45]  M. W. Slack,et al.  Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times , 1977 .

[46]  J. Troe Thermal dissociation and recombination of polyatomic molecules , 1975 .