Tempered Fractional Stable Motion

Tempered fractional stable motion adds an exponential tempering to the power-law kernel in a linear fractional stable motion, or a shift to the power-law filter in a harmonizable fractional stable motion. Increments from a stationary time series that can exhibit semi-long-range dependence. This paper develops the basic theory of tempered fractional stable processes, including dependence structure, sample path behavior, local times, and local nondeterminism.

[1]  Murad S. Taqqu,et al.  A Characterization of the Asymptotic Behavior of Stationary Stable Processes , 1991 .

[2]  Mark M. Meerschaert,et al.  Tempered fractional time series model for turbulence in geophysical flows , 2014 .

[3]  M. Freeman,et al.  Towards Synthesis of Solar Wind and Geomagnetic Scaling Exponents: A Fractional Lévy Motion Model , 2005 .

[4]  M. Taqqu,et al.  Simulation methods for linear fractional stable motion and farima using the fast fourier transform , 2004 .

[5]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[6]  Piotr Kokoszka,et al.  New classes of self-similar symmetric stable random fields , 1994 .

[7]  Mark M. Meerschaert,et al.  Tempered fractional calculus , 2015, J. Comput. Phys..

[8]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[9]  J. Nolan,et al.  Local nondeterminism and local times for stable processes , 1989 .

[10]  M. Meerschaert,et al.  Tempered fractional Brownian motion , 2013 .

[11]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[12]  M. Freeman,et al.  Synthesis of scaling exponents: a fractional Levy model , 2005, physics/0509058.

[13]  Yimin Xiao Properties of Local Nondeterminism of Gaussian and Stable Random Fields and Their Applications , 2006 .

[14]  M. Dozzi,et al.  Real harmonizable multifractional stable process and its local properties , 2010, 1012.0503.

[15]  S. Berman Local nondeterminism and local times of Gaussian processes , 1973 .

[16]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[17]  Mark M Meerschaert,et al.  STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION. , 2014, Stochastic processes and their applications.

[18]  竹中 茂夫 G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .

[19]  M. Taqqu,et al.  The asymptotic dependence structure of the linear fractional Lévy motion , 1991 .