Population genomics and evolution of a fungal pathogen after releasing exotic strains to control insect pests for 20 years

[1]  Stefan Engelen,et al.  Genome evolution across 1,011 Saccharomyces cerevisiae isolates , 2018, Nature.

[2]  A. Urbaneja,et al.  Biological control using invertebrates and microorganisms: plenty of new opportunities , 2018, BioControl.

[3]  E. Lysøe,et al.  Diversity and abundance of Beauveria bassiana in soils, stink bugs and plant tissues of common bean from organic and conventional fields. , 2017, Journal of invertebrate pathology.

[4]  Yuzhen Lu,et al.  Divergent LysM effectors contribute to the virulence of Beauveria bassiana by evasion of insect immune defenses , 2017, PLoS pathogens.

[5]  R. Terauchi,et al.  Coexistence of Multiple Endemic and Pandemic Lineages of the Rice Blast Pathogen , 2017, mBio.

[6]  E. Stukenbrock,et al.  Evolution and genome architecture in fungal plant pathogens , 2017, Nature Reviews Microbiology.

[7]  R. Terauchi,et al.  Evolution of the wheat blast fungus through functional losses in a host specificity determinant , 2017, Science.

[8]  J. Gouzy,et al.  Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates , 2017, Molecular ecology.

[9]  P. Frey,et al.  The escalatory Red Queen: Population extinction and replacement following arms race dynamics in poplar rust , 2017, Molecular ecology.

[10]  Christina A Cuomo,et al.  Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans , 2017, bioRxiv.

[11]  Chengshu Wang,et al.  Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements. , 2017, Annual review of entomology.

[12]  B. Zwaan,et al.  Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes , 2016, BMC Genomics.

[13]  R. Visser,et al.  Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato , 2016, Theoretical and Applied Genetics.

[14]  N. Talbot,et al.  Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae , 2016, BMC Biology.

[15]  Chengshu Wang,et al.  Divergent and Convergent Evolution of Fungal Pathogenicity , 2016, Genome biology and evolution.

[16]  Jana Sperschneider,et al.  EffectorP: predicting fungal effector proteins from secretomes using machine learning. , 2016, The New phytologist.

[17]  Haipeng Li,et al.  New Software for the Fast Estimation of Population Recombination Rates (FastEPRR) in the Genomic Era , 2016, G3: Genes, Genomes, Genetics.

[18]  J. Chun,et al.  OrthoANI: An improved algorithm and software for calculating average nucleotide identity. , 2016, International journal of systematic and evolutionary microbiology.

[19]  Michael M. Desai,et al.  Sex Speeds Adaptation by Altering the Dynamics of Molecular Evolution , 2016, Nature.

[20]  S. Raffaele,et al.  The two-speed genomes of filamentous pathogens: waltz with plants. , 2015, Current opinion in genetics & development.

[21]  S. Branco,et al.  Clonal reproduction in fungi , 2015, Proceedings of the National Academy of Sciences.

[22]  Michael DeGiorgio,et al.  SweepFinder2: increased sensitivity, robustness and flexibility , 2015, Bioinform..

[23]  R. Ramírez-González,et al.  Field pathogenomics reveals the emergence of a diverse wheat yellow rust population , 2015, Genome Biology.

[24]  S. Altizer,et al.  The genetics of monarch butterfly migration and warning coloration , 2014, Nature.

[25]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[26]  A. B. Jensen,et al.  Evolutionary interaction networks of insect pathogenic fungi. , 2014, Annual review of entomology.

[27]  W. Stephan,et al.  SPEED OF ADAPTATION AND GENOMIC FOOTPRINTS OF HOST–PARASITE COEVOLUTION UNDER ARMS RACE AND TRENCH WARFARE DYNAMICS , 2013, Evolution; international journal of organic evolution.

[28]  Christopher J. R. Illingworth,et al.  Inferring Genome-Wide Recombination Landscapes from Advanced Intercross Lines: Application to Yeast Crosses , 2013, PloS one.

[29]  A. Vilcinskas,et al.  Can Insects Develop Resistance to Insect Pathogenic Fungi? , 2013, PloS one.

[30]  David W. Cheung,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[31]  Guo-Ping Zhao,et al.  Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana , 2012, Scientific Reports.

[32]  J. Brownstein,et al.  Emerging fungal threats to animal, plant and ecosystem health , 2012, Nature.

[33]  Monica Pava-Ripoll,et al.  Local adaptation of an introduced transgenic insect fungal pathogen due to new beneficial mutations , 2011, Proceedings of the National Academy of Sciences.

[34]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[35]  J. Vandenberg,et al.  Comparative virulence of Beauveria bassiana isolates against lepidopteran pests of vegetable crops. , 2010, Journal of invertebrate pathology.

[36]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[37]  Jeffrey C Barrett,et al.  Haploview: Visualization and analysis of SNP genotype data. , 2009, Cold Spring Harbor protocols.

[38]  David H. Alexander,et al.  Fast model-based estimation of ancestry in unrelated individuals. , 2009, Genome research.

[39]  W. Qian,et al.  An overview of dry-wet climate variability among monsoon-westerly regions and the monsoon northernmost marginal active zone in China , 2009 .

[40]  J. Eilenberg,et al.  Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats , 2009, Molecular ecology.

[41]  G. Sung,et al.  Stable Formation of Fruiting Body in Cordyceps bassiana , 2007, Mycobiology.

[42]  J. Eilenberg,et al.  Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control , 2007 .

[43]  G. Zimmermann Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii , 2007 .

[44]  J. Vandenberg,et al.  Vegetative compatibility groups in indigenous and mass-released strains of the entomopathogenic fungus Beauveria bassiana: likelihood of recombination in the field. , 2004, Journal of invertebrate pathology.

[45]  C. Wang,et al.  Molecular monitoring and evaluation of the application of the insect‐pathogenic fungus Beauveria bassiana in southeast China , 2004, Journal of applied microbiology.

[46]  Chengshu Wang,et al.  Molecular investigation on strain genetic relatedness and population structure of Beauveria bassiana. , 2003, Environmental microbiology.

[47]  S. Simpson,et al.  Coping with crowds: Density-dependent disease resistance in desert locusts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Zeng-zhi Li,et al.  Discovery and demonstration of the teleomorph ofBeauveria bassiana (Bals.) Vuill., an important entomogenous fungus , 2001 .

[49]  G. May,et al.  The signature of balancing selection: fungal mating compatibility gene evolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  R. S. St. Leger,et al.  Fate of biological control introductions: monitoring an Australian fungal pathogen of grasshoppers in North America. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Elkinton,et al.  Host Dispersal and the Spatial Spread of Insect Pathogens , 1995 .

[52]  T. Andreadis,et al.  Discovery of Entomophaga maimaiga in North American gypsy moth, Lymantria dispar. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[53]  F. Tajima The effect of change in population size on DNA polymorphism. , 1989, Genetics.

[54]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[55]  S WRIGHT,et al.  Genetical structure of populations. , 1950, Nature.