Degradation Mechanism of an IrO2 Anode Co-Catalyst for Cell Voltage Reversal Mitigation under Transient Operation Conditions of a PEM Fuel Cell

[1]  François B. Van Schalkwyk,et al.  Increasing fuel cell durability during prolonged and intermittent fuel starvation using supported IrOx , 2021 .

[2]  J. Durst,et al.  Transformation of the OER-Active IrOx Species under Transient Operation Conditions in PEM Water Electrolysis , 2021 .

[3]  Jingxin Zhang,et al.  Editors’ Choice—Necessity to Avoid Titanium Oxide as Electrocatalyst Support in PEM Fuel Cells: A Membrane Durability Study , 2021 .

[4]  H. Gasteiger,et al.  The Discrepancy in Oxygen Evolution Reaction Catalyst Lifetime Explained: RDE vs MEA - Dynamicity within the Catalyst Layer Matters , 2021, Journal of The Electrochemical Society.

[5]  P. Strasser,et al.  Towards a Harmonized Accelerated Stress Test Protocol for Fuel Starvation Induced Cell Reversal Events in PEM Fuel Cells: The Effect of Pulse Duration , 2020 .

[6]  Jiangfeng Zhou,et al.  Water electrolysis plateau in voltage reversal process for proton exchange membrane fuel cells , 2020 .

[7]  H. Gasteiger,et al.  Iridium Oxide Catalyst Supported on Antimony-Doped Tin Oxide for High Oxygen Evolution Reaction Activity in Acidic Media , 2020 .

[8]  H. Gasteiger,et al.  Current Challenges in Catalyst Development for PEM Water Electrolyzers , 2020, Chemie Ingenieur Technik.

[9]  Xiao‐Zi Yuan,et al.  Study of failure mechanisms of the reversal tolerant fuel cell anode via novel in-situ measurements , 2020 .

[10]  Hyunjoo J. Lee,et al.  Monodisperse IrOx deposited on Pt/C for reversal tolerant anode in proton exchange membrane fuel cell , 2019 .

[11]  Tae-Yang Kim,et al.  Multifunctional non-Pt ternary catalyst for the hydrogen oxidation and oxygen evolution reactions in reversal-tolerant anode , 2019, Catalysis Communications.

[12]  E. Gyenge,et al.  Vibrating Powders: Electrochemical Quartz Crystal Microbalance Study of IrO2 and Pt/C Catalyst Layers for Voltage Reversal Tolerant Anodes in Fuel Cells , 2019, The Journal of Physical Chemistry C.

[13]  Jun Lu,et al.  A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. , 2019, Angewandte Chemie.

[14]  E. Gyenge,et al.  Novel methodology for ex situ characterization of iridium oxide catalysts in voltage reversal tolerant proton exchange membrane fuel cell anodes , 2019, Journal of Power Sources.

[15]  H. Gasteiger,et al.  Impact of Intermittent Operation on Lifetime and Performance of a PEM Water Electrolyzer , 2018, Journal of The Electrochemical Society.

[16]  Y. Chen,et al.  Anode Aging during PEMFC Start-Up and Shut-Down: H2-Air Fronts vs Voltage Cycles , 2018 .

[17]  R. Behm,et al.  On the Role of the Support in Pt Anode Catalyst Degradation under Simulated H2 Fuel Starvation Conditions , 2018 .

[18]  Hubert A. Gasteiger,et al.  Cathode Loading Impact on Voltage Cycling Induced PEMFC Degradation: A Voltage Loss Analysis , 2018 .

[19]  J. Dang,et al.  Reduction Kinetics of Hematite Powder in Hydrogen Atmosphere at Moderate Temperatures , 2018, Metals.

[20]  K. Mayrhofer,et al.  In Situ Stability Studies of Platinum Nanoparticles Supported on Ruthenium−Titanium Mixed Oxide (RTO) for Fuel Cell Cathodes , 2018, ACS Catalysis.

[21]  Shawn Litster,et al.  Understanding the voltage reversal behavior of automotive fuel cells , 2018, Journal of Power Sources.

[22]  A. Ludwig,et al.  The stability number as a metric for electrocatalyst stability benchmarking , 2018, Nature Catalysis.

[23]  K. Mayrhofer,et al.  Unravelling Degradation Pathways of Oxide‐Supported Pt Fuel Cell Nanocatalysts under In Situ Operating Conditions , 2018 .

[24]  H. Gasteiger,et al.  PEM Fuel Cell Start-Up/Shut-Down Losses vs Relative Humidity: The Impact of Water in the Electrode Layer on Carbon Corrosion , 2018 .

[25]  F. Ruiz-Zepeda,et al.  Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study. , 2017, Journal of the American Chemical Society.

[26]  D. Morgan,et al.  The X‐ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited , 2017 .

[27]  R. Schlögl,et al.  High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts. , 2017, ChemSusChem.

[28]  H. Gasteiger,et al.  Analysis of Voltage Losses in PEM Water Electrolyzers with Low Platinum Group Metal Loadings , 2017 .

[29]  H. Gasteiger,et al.  Monometallic Palladium for Oxygen Reduction in PEM Fuel Cells: Particle-Size Effect, Reaction Mechanism, and Voltage Cycling Stability , 2017 .

[30]  H. Gasteiger,et al.  PEM Fuel Cell Start-up/Shut-down Losses vs Temperature for Non-Graphitized and Graphitized Cathode Carbon Supports , 2017 .

[31]  Shawn Litster,et al.  On the impact of water activity on reversal tolerant fuel cell anode performance and durability , 2016 .

[32]  Simon Geiger,et al.  Oxygen evolution activity and stability of iridium in acidic media. Part 2. – Electrochemically grown hydrous iridium oxide , 2016 .

[33]  K. Mayrhofer,et al.  Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction , 2016 .

[34]  K. Mayrhofer,et al.  Oxygen evolution activity and stability of iridium in acidic media. Part 1. – Metallic iridium , 2016 .

[35]  R. Schlögl,et al.  The electronic structure of iridium and its oxides , 2016 .

[36]  Hubert A. Gasteiger,et al.  Influence of Ionomer Content in IrO 2 /TiO 2 Electrodes on PEM Water Electrolyser Performance , 2016 .

[37]  R. Borup,et al.  Carbon corrosion in PEM fuel cells during drive cycle operation , 2015 .

[38]  H. Gasteiger,et al.  Influence of the Gas Diffusion Layer Compression on the Oxygen Mass Transport in PEM Fuel Cells , 2015 .

[39]  S. Rouvimov,et al.  Nickel Oxide Reduction by Hydrogen: Kinetics and Structural Transformations , 2015 .

[40]  Chenyao Fan,et al.  Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity , 2015, Scientific Reports.

[41]  Charles C. L. McCrory,et al.  Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. , 2015, Journal of the American Chemical Society.

[42]  Hubert A. Gasteiger,et al.  Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media , 2015 .

[43]  H. Gasteiger,et al.  New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism , 2014 .

[44]  Ermete Antolini,et al.  Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells , 2014 .

[45]  Dongsen Mao,et al.  Effect of TiO2 crystal structure on the catalytic performance of Co3O4/TiO2 catalyst for low-temperature CO oxidation , 2014 .

[46]  Robert Schlögl,et al.  Electrocatalytic Oxygen Evolution on Iridium Oxide: Uncovering Catalyst-Substrate Interactions and Active Iridium Oxide Species , 2014 .

[47]  M. Barati,et al.  TGA kinetic study on the hydrogen reduction of an iron nickel oxide , 2013 .

[48]  K. Chou,et al.  Study on kinetics of hydrogen reduction of MoO2 , 2013 .

[49]  S. P. Tewari,et al.  Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn-Wall-Ozawa method. , 2013, The journal of physical chemistry. A.

[50]  K. Chou,et al.  Reduction Kinetics of Metal Oxides by Hydrogen , 2013 .

[51]  Y. Tak,et al.  Attenuated degradation of a PEMFC cathode during fuel starvation by using carbon-supported IrO2 , 2013 .

[52]  Peter Strasser,et al.  Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials , 2012 .

[53]  J. Ma,et al.  Kinetics and electrocatalytic activity of IrCo/C catalysts for oxygen reduction reaction in PEMFC , 2012 .

[54]  E. Antolini The problem of Ru dissolution from Pt–Ru catalysts during fuel cell operation: analysis and solutions , 2011 .

[55]  P. He,et al.  Characterization of the Degree of Ru Crossover and Its Performance Implications in Polymer Electrolyte Membrane Fuel Cells , 2010 .

[56]  Michael K. Carpenter,et al.  Anode Materials for Mitigating Hydrogen Starvation Effects in PEM Fuel Cells , 2010 .

[57]  V. Birss,et al.  Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition , 2009 .

[58]  C. Song,et al.  Characterization of Structural and Surface Properties of Nanocrystalline TiO2−CeO2 Mixed Oxides by XRD, XPS, TPR, and TPD , 2009 .

[59]  Jun Shen,et al.  A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies , 2008 .

[60]  S. Mukerjee,et al.  The Impact of Ru Contamination of a Pt ∕ C Electrocatalyst on Its Oxygen-Reducing Activity , 2007 .

[61]  Mike L. Perry,et al.  Systems Strategies to Mitigate Carbon Corrosion in Fuel Cells , 2006 .

[62]  Robert M. Darling,et al.  Model of Carbon Corrosion in PEM Fuel Cells , 2006 .

[63]  W. Gu,et al.  Durable PEM Fuel Cell Electrode Materials: Requirements and Benchmarking Methodologies , 2006 .

[64]  David P. Wilkinson,et al.  Electrocatalyst Stability In PEMFCs And The Role Of Fuel Starvation And Cell Reversal Tolerant Anodes , 2006 .

[65]  L. J. Bregoli,et al.  A Reverse-Current Decay Mechanism for Fuel Cells , 2005 .

[66]  Jianguo Wang,et al.  Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents , 2004 .

[67]  Piotr Zelenay,et al.  Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode , 2004 .

[68]  B. Conway,et al.  Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour , 1983 .

[69]  E. O'Sullivan,et al.  Oxygen gas evolution on hydrous oxides — An example of three-dimensional electrocatalysis? , 1981 .

[70]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[71]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .