Single molecule biophysics and fluorescence correlation spectroscopy

[1]  Xin Sheng Zhao,et al.  Amplitude of Relaxations in Fluorescence Correlation Spectroscopy for Fluorophores That Diffuse Together. , 2013, The journal of physical chemistry letters.

[2]  Amanda M. Alliband,et al.  Synthesis and characterization of picket porphyrin receptors that bind phosphatidylglycerol, an anionic phospholipid found in bacterial membranes. , 2013, The Journal of organic chemistry.

[3]  J. Dekker,et al.  The long-range interaction landscape of gene promoters , 2012, Nature.

[4]  Todd D. Lillian,et al.  FRET studies of a landscape of Lac repressor-mediated DNA loops , 2012, Nucleic acids research.

[5]  Xin Sheng Zhao,et al.  Ultrafast photoinduced electron transfer between tetramethylrhodamine and guanosine in aqueous solution. , 2011, The journal of physical chemistry. B.

[6]  J. Kahn,et al.  Gene repression by minimal lac loops in vivo , 2010, Nucleic acids research.

[7]  Xin Sheng Zhao,et al.  Direct measurement of the rates and barriers on forward and reverse diffusions of intramolecular collision in overhang oligonucleotides. , 2010, The journal of physical chemistry. B.

[8]  Tak W. Kee,et al.  The role of charge in the surfactant-assisted stabilization of the natural product curcumin. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[9]  W. E. Moerner,et al.  Watching conformational- and photo-dynamics of single fluorescent proteins in solution , 2010, Nature chemistry.

[10]  J. Sparano,et al.  Relationship of Anthracycline-Free Interval to Outcomes in a Phase 3 Trial of Pegylated Liposomal Doxorubicin Plus Docetaxel Compared with Docetaxel Monotherapy in Patients with Advanced Breast Cancer Treated with Adjuvant Anthracycline. , 2009 .

[11]  P. Gimotty,et al.  Increased immunogenicity of surviving tumor cells enables cooperation between liposomal doxorubicin and IL-18 , 2009, Journal of Translational Medicine.

[12]  K. Longmuir,et al.  Liposomal delivery of doxorubicin to hepatocytes in vivo by targeting heparan sulfate. , 2009, International journal of pharmaceutics.

[13]  Emily J. Danoff,et al.  Catanionic surfactant vesicles for electrostatic molecular sequestration and separation. , 2009, Physical chemistry chemical physics : PCCP.

[14]  Robert Daber,et al.  One is not enough. , 2009, Journal of molecular biology.

[15]  D. Danino,et al.  Carbohydrate modified catanionic vesicles: probing multivalent binding at the bilayer interface. , 2009, Journal of the American Chemical Society.

[16]  Sachin Goyal,et al.  Computational analysis of looping of a large family of highly bent DNA by LacI. , 2008, Biophysical journal.

[17]  T. Bramer,et al.  Pharmaceutical applications for catanionic mixtures , 2007, The Journal of pharmacy and pharmacology.

[18]  S. Raghavan,et al.  Surfactant vesicles for high-efficiency capture and separation of charged organic solutes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[19]  M. Lewis,et al.  Structural analysis of lac repressor bound to allosteric effectors. , 2007, Journal of molecular biology.

[20]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[21]  B. L. Steele,et al.  Total internal reflection with fluorescence correlation spectroscopy , 2007, Nature Protocols.

[22]  A. Gast,et al.  Phase behavior and the partitioning of caveolin-1 scaffolding domain peptides in model lipid bilayers. , 2006, Journal of colloid and interface science.

[23]  J. Kahn,et al.  FLEXIBILITY AND CONTROL OF PROTEIN–DNA LOOPS , 2006 .

[24]  N. Thompson,et al.  Ligand binding by estrogen receptor beta attached to nanospheres measured by fluorescence correlation spectroscopy , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[25]  Benno Müller-Hill,et al.  Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction , 2006, Nucleic acids research.

[26]  I. Nabi,et al.  Fluorescence-quenching and resonance energy transfer studies of lipid microdomains in model and biological membranes (Review) , 2006, Molecular membrane biology.

[27]  Thomas D. Perroud,et al.  Cytochrome c conformations resolved by the photon counting histogram: watching the alkaline transition with single-molecule sensitivity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  H. Maeda,et al.  The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy in the 21st Century , 2005 .

[29]  Kenji Okamoto,et al.  Single-molecule spectroscopic determination of lac repressor-DNA loop conformation. , 2005, Biophysical journal.

[30]  J. Kahn,et al.  Bacterial repression loops require enhanced DNA flexibility. , 2005, Journal of molecular biology.

[31]  Konstantin Virnik,et al.  A gamut of loops: meandering DNA. , 2005, Trends in biochemical sciences.

[32]  M. Lewis,et al.  The lac repressor. , 2005, Comptes rendus biologies.

[33]  Mark Bates,et al.  Short-range spectroscopic ruler based on a single-molecule optical switch. , 2005, Physical review letters.

[34]  R. Pashley,et al.  Applied Colloid and Surface Chemistry , 2004 .

[35]  S. McLaughlin,et al.  Fluorescence correlation spectroscopy studies of Peptide and protein binding to phospholipid vesicles. , 2004, Biophysical journal.

[36]  S. Rangelov,et al.  Spontaneously formed nonequilibrium vesicles of cetyltrimethylammonium bromide and sodium octyl sulfate in aqueous dispersions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[37]  W. Webb,et al.  Fluorescence Photoconversion Kinetics in Novel Green Fluorescent Protein pH Sensors (pHluorins) , 2004 .

[38]  Jianpeng Ma,et al.  Allosteric transition pathways in the lactose repressor protein core domains: Asymmetric motions in a homodimer , 2003, Protein science : a publication of the Protein Society.

[39]  S. Leibler,et al.  DNA looping and physical constraints on transcription regulation. , 2003, Journal of molecular biology.

[40]  Ammasi Periasamy,et al.  Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations , 2003, The Journal of cell biology.

[41]  Elliot L Elson,et al.  Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias. , 2003, Biophysical journal.

[42]  R. Cheong,et al.  Fluorescence Resonance Energy Transfer over ∼130 Basepairs in Hyperstable Lac Repressor-DNA Loops , 2003 .

[43]  W. Eaton,et al.  Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy , 2002, Nature.

[44]  W. Webb,et al.  Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. , 2002, Biophysical journal.

[45]  O. Krichevsky,et al.  Fluorescence correlation spectroscopy: the technique and its applications , 2002 .

[46]  M. Lewis,et al.  Structure of a variant of lac repressor with increased thermostability and decreased affinity for operator. , 2001, Journal of molecular biology.

[47]  C. Tondre,et al.  Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis. , 2001, Advances in colloid and interface science.

[48]  Watt W. Webb,et al.  Fluorescence correlation spectroscopy , 2000 .

[49]  M. Lewis,et al.  A closer view of the conformation of the Lac repressor bound to operator , 2000, Nature Structural Biology.

[50]  E Gratton,et al.  The photon counting histogram in fluorescence fluctuation spectroscopy. , 1999, Biophysical journal.

[51]  R. Heim,et al.  Using GFP in FRET-based applications. , 1999, Trends in cell biology.

[52]  D. Lasič Novel applications of liposomes. , 1998, Trends in biotechnology.

[53]  W. Webb,et al.  Fluorescence correlation spectroscopy: diagnostics for sparse molecules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Zasadzinski,et al.  Electrostatic Control of Spontaneous Vesicle Aggregation , 1997 .

[55]  Joseph A. Zasadzinski,et al.  Encapsulation of bilayer vesicles by self-assembly , 1997, nature.

[56]  G. Ruben,et al.  Conformation of Lac repressor tetramer in solution, bound and unbound to operator DNA , 1997, Microscopy research and technique.

[57]  M Carmona,et al.  Activation of transcription at sigma 54-dependent promoters on linear templates requires intrinsic or induced bending of the DNA. , 1996, Journal of molecular biology.

[58]  D. F. Ogletree,et al.  Probing the interaction between single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[59]  G. Chang,et al.  Crystal Structure of the Lactose Operon Repressor and Its Complexes with DNA and Inducer , 1996, Science.

[60]  J. Zasadzinski,et al.  Measurement of forces between spontaneous vesicle-forming bilayers , 1995 .

[61]  T. Steitz,et al.  Crystal structure of lac repressor core tetramer and its implications for DNA looping. , 1995, Science.

[62]  L. Finzi,et al.  Measurement of lactose repressor-mediated loop formation and breakdown in single DNA molecules , 1995, Science.

[63]  B. Müller-Hill,et al.  Quality and position of the three lac operators of E. coli define efficiency of repression. , 1994, The EMBO journal.

[64]  M. Eigen,et al.  Sorting single molecules: application to diagnostics and evolutionary biotechnology. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Bouwstra,et al.  Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery , 1994 .

[66]  M. Brenowitz,et al.  Interactions between DNA-bound transcriptional regulators of the Escherichia coli gal operon. , 1992, Biochemistry.

[67]  R. Lobell,et al.  AraC-DNA looping: orientation and distance-dependent loop breaking by the cyclic AMP receptor protein. , 1991, Journal of molecular biology.

[68]  M. Brenowitz,et al.  DNA-binding properties of a lac repressor mutant incapable of forming tetramers. , 1991, The Journal of biological chemistry.

[69]  Steven A. Soper,et al.  Detection of single fluorescent molecules , 1990 .

[70]  R F Schleif,et al.  DNA looping and unlooping by AraC protein , 1990, Science.

[71]  S. Kustu,et al.  The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons , 1990, Cell.

[72]  D M Crothers,et al.  Intrinsically bent DNA. , 1990, The Journal of biological chemistry.

[73]  D. Crothers,et al.  Determination of the extent of DNA bending by an adenine-thymine tract. , 1990, Biochemistry.

[74]  S. Safran,et al.  Theory of Spontaneous Vesicle Formation in Surfactant Mixtures , 1990, Science.

[75]  J. Zasadzinski,et al.  Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. , 1989, Science.

[76]  I. Tannock,et al.  Acid pH in tumors and its potential for therapeutic exploitation. , 1989, Cancer research.

[77]  P. V. Hippel,et al.  Facilitated target location in biological systems. , 1989, The Journal of biological chemistry.

[78]  A. Nordheim,et al.  DNA supercoiling changes the spacing requirement of two lac operators for DNA loop formation with lac repressor. , 1988, The EMBO journal.

[79]  R. Wells,et al.  Influence of supercoiling and sequence context on operator DNA binding with lac repressor. , 1987, The Journal of biological chemistry.

[80]  R. Schleif Why should DNA loop? , 1987, Nature.

[81]  M C Mossing,et al.  Upstream operators enhance repression of the lac promoter. , 1986, Science.

[82]  A. Florence,et al.  The preparation and properties of niosomes—non‐ionic surfactant vesicles , 1985, The Journal of pharmacy and pharmacology.

[83]  D. Sornette,et al.  The interdependence of intra-aggregate and inter-aggregate forces , 1985 .

[84]  M. Caruthers,et al.  A calorimetric investigation of the interaction of the lac repressor with inducer. , 1982, The Journal of biological chemistry.

[85]  T. Steitz,et al.  Escherichia coli lac repressor is elongated with its operator DNA binding domains located at both ends. , 1982, Journal of molecular biology.

[86]  R. Dickerson,et al.  Equilibrium binding of inducer to lac repressor.operator DNA complex. , 1980, The Journal of biological chemistry.

[87]  D. Deamer,et al.  Liposomes from ionic, single-chain amphiphiles. , 1978, Biochemistry.

[88]  P. V. von Hippel,et al.  Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: measurement of DNA-bound Escherichia coli lac repressor in vivo. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[89]  T. Hirschfeld Optical microscopic observation of single small molecules. , 1976, Applied optics.

[90]  W. Webb,et al.  Dynamics of fluorescence marker concentration as a probe of mobility. , 1976, Biophysical journal.

[91]  S. Aragon,et al.  Fluorescence correlation spectroscopy as a probe of molecular dynamics , 1976 .

[92]  M. Ehrenberg,et al.  Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules , 1976, Quarterly Reviews of Biophysics.

[93]  W. Webb Applications of Fluorescence Correlation Spectroscopy , 1976, Quarterly Reviews of Biophysics.

[94]  D. Magde Chemical kinetics and fluorescence correlation spectroscopy. , 1976 .

[95]  Y. Ohshima,et al.  Binding of an inducer to the lac repressor. , 1974, Journal of molecular biology.

[96]  Robert E. Dale,et al.  Intramolecular distances determined by energy transfer. Dependence on orientational freedom of donor and acceptor , 1974 .

[97]  W. Reznikoff,et al.  The location of the repressor binding sites in the lac operon. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[98]  W. Gilbert,et al.  The nucleotide sequence of the lac operator. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[99]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[100]  M. Hicks,et al.  Ufasomes are Stable Particles surrounded by Unsaturated Fatty Acid Membranes , 1973, Nature.

[101]  W. Webb,et al.  Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy , 1972 .

[102]  L. Stryer,et al.  Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Boris Rotman,et al.  MEASUREMENT OF ACTIVITY OF SINGLE MOLECULES OF β-D-GALACTOSIDASE , 1961 .

[104]  D. Cowie,et al.  Kinetic Studies of β-Galactosidase Induction , 1961 .

[105]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[106]  Jin Zhang,et al.  Dynamic visualization of cellular signaling. , 2010, Advances in biochemical engineering/biotechnology.

[107]  C. Wilson,et al.  The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding , 2006, Cellular and Molecular Life Sciences.

[108]  M Dahan,et al.  Ratiometric single-molecule studies of freely diffusing biomolecules. , 2001, Annual review of physical chemistry.

[109]  R. Rigler,et al.  Fluorescence correlation spectroscopy , 2001 .

[110]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[111]  Janos H. Fendler,et al.  Surfactant vesicles as membrane mimetic agents: characterization and utilization , 1980 .

[112]  B. Ninham,et al.  Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers , 1976 .

[113]  G. Yagil,et al.  On the relation between effector concentration and the rate of induced enzyme synthesis. , 1971, Biophysical journal.

[114]  A. Bangham,et al.  NEGATIVE STAINING OF PHOSPHOLIPIDS AND THEIR STRUCTURAL MODIFICATION BY SURFACE-ACTIVE AGENTS AS OBSERVED IN THE ELECTRON MICROSCOPE. , 1964, Journal of molecular biology.

[115]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .